Violation of the incompressibility of liquid by simple shear flow


In standard fluid dynamics1,2, the density change associated with flow is often assumed to be negligible, implying that the fluid is incompressible. For example, this has been established for simple shear flows, where no pressure change is associated with flow: there is no volume deformation due to viscous stress and inertial effects can be neglected. Accordingly, any flow-induced instabilities (such as cavitation) are unexpected for simple shear flows. Here we demonstrate that the incompressibility condition can be violated even for simple shear flows, by taking into account the coupling between the flow and density fluctuations, which arises owing to the density dependence of the viscosity. We show that a liquid can become mechanically unstable above a critical shear rate that is given by the inverse of the derivative of viscosity with respect to pressure. Our model predicts that, for very viscous liquids, this shear-induced instability should occur at moderate shear rates that are experimentally accessible. Our results explain the unusual shear-induced instability observed in viscous lubricants3,4,5, and may illuminate other poorly understood phenomena associated with mechanical instability of liquids at low Reynolds number; for example, shear-induced cavitation and bubble growth6, and shear-banding of very viscous liquids such as metallic glasses7 and the Earth's mantle8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Intuitive explanation for the mechanism of shear-induced instability of a liquid.
Figure 2: Shear-induced instability of a thermodynamically stable liquid.
Figure 3: Rheological behaviour of a thermodynamically stable liquid under shear deformation.


  1. 1

    Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon, New York, 1959)

    Google Scholar 

  2. 2

    Tritton, D. J. Physical Fluid Dynamics 2nd edn (Oxford Univ. Press, Oxford, 1988)

    Google Scholar 

  3. 3

    Bair, S. & Winer, W. O. The high shear stress rheology of liquid lubricants at pressures of 2 to 200 MPa. J. Tribol. 112, 246–253 (1990)

    CAS  Article  Google Scholar 

  4. 4

    Bair, S. & Winer, W. O. The high pressure, high shear stress rheology of liquid lubricants. J. Tribol. 114, 1–13 (1992)

    CAS  Article  Google Scholar 

  5. 5

    Bair, S., Qureshi, F. & Winer, W. O. Observations of shear localization in liquid lubricants under pressure. J. Tribol. 115, 507–514 (1993)

    CAS  Article  Google Scholar 

  6. 6

    Archer, L. A., Ternet, D. & Larson, R. G. “Fracture” phenomena in shearing flow of viscous liquids. Rheol. Acta 36, 579–584 (1997)

    CAS  Article  Google Scholar 

  7. 7

    Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)

    CAS  Article  Google Scholar 

  8. 8

    Alsop, G. I., Holdsworth, R. E., McCaffrey, K. J. W. & Hand, M. (eds) Flow Processes in Faults and Shear Zones (Geological Society, London, 2004)

  9. 9

    Brennen, C. E. Cavitation and Bubble Dynamics (Oxford Univ. Press, New York, 1995)

    Google Scholar 

  10. 10

    Lohse, D. Bubble puzzles. Phys. Today 56, 36–41 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Larson, R. G. The Structure and Rheology of Complex Fluids (Oxford Univ. Press, Oxford, 1999)

    Google Scholar 

  12. 12

    Onuki, A. Phase Transition Dynamics (Cambridge Univ. Press, Cambridge, 2002)

    Google Scholar 

  13. 13

    Onuki, A. Phase transitions of fluids in shear flow. J. Phys. Condens. Matter 9, 6119–6157 (1997)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Helfand, E. & Fredrickson, G. H. Large fluctuations in polymer solutions under shear. Phys. Rev. Lett. 62, 2468–2471 (1989)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Milner, S. T. Dynamic theory of concentration fluctuations in polymer solutions under shear. Phys. Rev. E 48, 3674–3691 (1993)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Bruinsma, R. & Rabin, Y. Shear-flow enhancement and suppression of fluctuations in smectic liquid crystals. Phys. Rev. A 45, 994–1008 (1992)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Joseph, D. D. Cavitation and the state of stress in a flowing liquid. J. Fluid. Mech. 366, 367–378 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Estler, W. T., Hocken, R., Charlton, T. & Wilcox, L. R. Coexistence curve, compressibility, and the equation of state of xenon near the critical point. Phys. Rev. A 12, 2118–2136 (1975)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Strumpf, H. J., Collings, A. F. & Pings, C. J. Viscosity of xenon and ethane in the critical region. J. Chem. Phys. 60, 3109–3123 (1974)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Granick, S., Zhu, Y. & Lee, H. Slippery questions about complex fluids flowing past solids. Nature Mater. 2, 221–227 (2003)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Neto, C., Evans, D. R., Bonaccurso, E., Butt, H.-J. & Craig, V. S. J. Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)

    ADS  CAS  Article  Google Scholar 

  22. 22

    de Gennes, P.-G. On fluid/wall slippage. Langmuir 18, 3413–3414 (2002)

    CAS  Article  Google Scholar 

  23. 23

    Roland, C. M., Hensel-Bielowka, S., Paluch, M. & Casalini, R. Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure. Rep. Prog. Phys. 68, 1405–1478 (2005)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Bottinga, Y. & Richet, P. Sillicate melts: The “anomalous” pressure dependence of the viscosity. Geochim. Cosmochim. Acta 59, 2725–2731 (1995)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Yasutomi, S., Bair, S. & Winer, W. O. An application of a free volume model to lubricant rheology I—dependence of viscosity on temperature and pressure. J. Tribol. 106, 291–302 (1984)

    CAS  Article  Google Scholar 

  26. 26

    Tanaka, H. Viscoelastic phase separation. J. Phys. Condens. Matter 12, R207–R264 (2000)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Hanes, D. M. & Inman, D. L. Observation of rapidly flowing granular-fluid materials. J. Fluid. Mech. 150, 357–380 (1985)

    ADS  Article  Google Scholar 

  28. 28

    Kestin, K., Korfali, O. & Sengers, J. V. Density expansion of the viscosity of carbon dioxide near the critical temperature. Physica A 100, 335–348 (1980)

    ADS  Article  Google Scholar 

  29. 29

    Rogallo, R. S. Numerical experiments in homogeneous turbulence. NASA Tech. Memo 81315 (1981)

  30. 30

    Bair, S. Normal stress difference in liquid lubricants sheared under high pressure. Rheol. Acta 35, 13–23 (1996)

    CAS  Article  Google Scholar 

Download references


We are grateful to C. P. Royall for a critical reading of our manuscript. This work was partially supported by a grant-in-aid for JSPS Fellows (A.F.) and a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (H.T.).

Author information



Corresponding authors

Correspondence to Akira Furukawa or Hajime Tanaka.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Furukawa, A., Tanaka, H. Violation of the incompressibility of liquid by simple shear flow. Nature 443, 434–438 (2006).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.