Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping


Bose–Einstein condensation1,2 is one of the most fascinating phenomena predicted by quantum mechanics. It involves the formation of a collective quantum state composed of identical particles with integer angular momentum (bosons), if the particle density exceeds a critical value. To achieve Bose–Einstein condensation, one can either decrease the temperature or increase the density of bosons. It has been predicted3,4 that a quasi-equilibrium system of bosons could undergo Bose–Einstein condensation even at relatively high temperatures, if the flow rate of energy pumped into the system exceeds a critical value. Here we report the observation of Bose–Einstein condensation in a gas of magnons at room temperature. Magnons are the quanta of magnetic excitations in a magnetically ordered ensemble of magnetic moments. In thermal equilibrium, they can be described by Bose–Einstein statistics with zero chemical potential and a temperature-dependent density. In the experiments presented here, we show that by using a technique of microwave pumping it is possible to excite additional magnons and to create a gas of quasi-equilibrium magnons with a non-zero chemical potential. With increasing pumping intensity, the chemical potential reaches the energy of the lowest magnon state, and a Bose condensate of magnons is formed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The set-up for magnon excitation and detection.
Figure 2: BLS spectrum of thermal magnons recorded without pumping.
Figure 3: BLS spectra from pumped magnons at different delay times, τ.
Figure 4: Evolution of the magnon population after the pumping is switched off at τ = 1,000 ns.


  1. 1

    Bose, S. N. Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)

  2. 2

    Einstein, A. Quantentheorie des einatomigen idealen Gases. Part I. Sber. Preuss. Akad. Wiss. 22, 261–267 (1924); Quantentheorie des einatomigen idealen Gases. Part II. Sber. Preuss. Akad. Wiss. 1, 3–14 (1925)

  3. 3

    Fröhlich, H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403 (1968)

  4. 4

    Mesquita, M. V., Vasconcellos, A. R. & Luzzi, R. Positive-feedback-enhanced Fröhlich's Bose–Einstein-like condensation in biosystems. Int. J. Quant. Chem. 66, 177–187 (1998)

  5. 5

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

  6. 6

    Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

  7. 7

    Bloch, I., Hänsch, T. W. & Esslinger, T. Measurement of the spatial coherence of a trapped Bose gas at the phase transition. Nature 403, 166–170 (2000)

  8. 8

    Hancox, C. I., Doret, S. C., Hummon, M. T., Luo, L. J. & Doyle, J. M. Magnetic trapping of rare-earth atoms at millikelvin temperatures. Nature 431, 281–284 (2004)

  9. 9

    Keldysh, L. V. The electron-hole liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986)

  10. 10

    Butov, L. V. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577–R1613 (2004)

  11. 11

    Fukuzawa, T., Mendez, E. E. & Hong, J. M. Phase transition of an exciton system in GaAs coupled quantum wells. Phys. Rev. Lett. 64, 3066–3069 (1990)

  12. 12

    Eisenstein, J. P. & MacDonald, A. M. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004)

  13. 13

    Yamamoto, Y. Half-matter, half-light amplifier. Nature 405, 629–630 (2000)

  14. 14

    Misochko, O. V., Hase, M., Ishioka, K. & Kitajima, M. Transient Bose–Einstein condensation of phonons. Phys. Lett. A 321, 381–387 (2004)

  15. 15

    Kalafati, Y. D. & Safonov, V. L. Thermodynamic approach to the theory of paramagnetic resonance of magnons. Zh. Eksp. Teor. Phys. 95, 2009–2020 (1989); [in English] Sov. Phys. JETP 68, 1162 (1989)

  16. 16

    Kaganov, M. I., Pustylnik, N. B. & Shalaeva, T. I. Magnons, magnetic polaritons, magnetostatic waves. Phys. Usp. 40, 181–224 (1997)

  17. 17

    Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of dilute magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000)

  18. 18

    Rüegg, C. et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 . Nature 423, 62–65 (2003)

  19. 19

    Della Torre, E., Bennett, L. H. & Watson, R. E. Extension of the Bloch T3/2 law to magnetic nanostructures: Bose–Einstein condensation. Phys. Rev. Lett. 94, 147210 (2005)

  20. 20

    L'vov, V. S. Wave Turbulence Under Parametric Excitation (Springer, Berlin, 1994)

  21. 21

    Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, New York, 1996)

  22. 22

    Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001)

  23. 23

    Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961)

  24. 24

    Sparks, M. Ferromagnetic resonance in thin films. I. Theory of normal-mode frequencies. Phys. Rev. B 1, 3831–3856 (1970)

  25. 25

    Wolfram, T. & De Wames, R. E. Magnetoexchange branches and spin-wave resonance in conducting and insulating films: perpendicular resonance. Phys. Rev. B 4, 3125–3141 (1971)

  26. 26

    Cottam, M. & Lockwood, D. Light Scattering in Magnetic Solids (Wiley, New York, 1986)

Download references


Support by the Deutsche Forschungsgemeinschaft, the US Army Research Office, and the Science & Technology Center of Ukraine is acknowledged. We are also indebted to D. Mills, V. Safonov and M. Katsnelson for discussions.

Author information



Corresponding author

Correspondence to S. O. Demokritov.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demokritov, S., Demidov, V., Dzyapko, O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.