Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

‘Designer atoms’ for quantum metrology


Entanglement is recognized as a key resource for quantum computation1 and quantum cryptography2. For quantum metrology, the use of entangled states has been discussed3,4,5 and demonstrated6 as a means of improving the signal-to-noise ratio. In addition, entangled states have been used in experiments for efficient quantum state detection7 and for the measurement of scattering lengths8. In quantum information processing, manipulation of individual quantum bits allows for the tailored design of specific states that are insensitive to the detrimental influences of an environment9. Such ‘decoherence-free subspaces’ (ref. 10) protect quantum information and yield significantly enhanced coherence times11. Here we use a decoherence-free subspace with specifically designed entangled states12 to demonstrate precision spectroscopy of a pair of trapped Ca+ ions; we obtain the electric quadrupole moment, which is of use for frequency standard applications. We find that entangled states are not only useful for enhancing the signal-to-noise ratio in frequency measurements—a suitably designed pair of atoms also allows clock measurements in the presence of strong technical noise. Our technique makes explicit use of non-locality as an entanglement property and provides an approach for ‘designed’ quantum metrology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relevant atomic levels of 40Ca+.
Figure 2: Parity oscillations of the entangled states Ψ 1 and Ψ 2 at U tips = 750 V tip voltage.
Figure 3: Angular dependence of the quadrupole shift.
Figure 4: Level shifts as a function of the applied external electric field gradient, d Ez/d z.


  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000)

  2. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  3. Giovannetti, V., Loyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Giovannetti, V., Loyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Widera, A. et al. Entanglement interferometry for precision measurement of atomic scattering properties. Phys. Rev. Lett. 92, 160406 (2004)

    Article  ADS  Google Scholar 

  9. Kielpinski, D. et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Roos, C. F. et al. Bell states with ultra-long lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Roos, C. F. Precision frequency measurements with entangled states. Preprint at (2005).

  13. Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950)

    Article  ADS  CAS  Google Scholar 

  14. Häffner, H. et al. Robust entanglement. Appl. Phys. B 81, 151–153 (2005)

    Article  ADS  Google Scholar 

  15. Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Madej, A. A. & Bernard, J. E. Frequency Measurement and Control (ed. Luiten, A. N.) 153–195 (Topics in Applied Physics Vol. 79, Springer, Berlin/Heidelberg, 2001)

    Book  Google Scholar 

  17. Diddams, S. A., Bergquist, J. C., Jefferts, S. R. & Oates, C. W. Standards of time and frequency at the outset of the 21st century. Science 306, 1318–1324 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Itano, W. M. External-field shifts of the 199Hg+ optical frequency standard. J. Res. Natl Inst. Stand. Technol. 105, 829–837 (2000)

    Article  CAS  Google Scholar 

  19. Oskay, W. H., Itano, W. M. & Bergquist, J. C. Measurements of the 199Hg+ 5d96s22D5/2 electric quadrupole moment and a constraint on the quadrupole shift. Phys. Rev. Lett. 94, 163001 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Barwood, G. P., Margolis, H. S., Huang, G., Gill, P. & Klein, H. A. Measurement of the electric quadrupole moment of the 4d 2D5/2 level in 88Sr+. Phys. Rev. Lett. 93, 133001 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Schneider, T., Peik, E. & Tamm, Chr. Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions. Phys. Rev. Lett. 94, 230801 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Itano, W. M. Quadrupole moments and hyperfine constants of metastable states of Ca+, Sr+, Ba+, Yb+, Hg+, and Au. Phys. Rev. A 73, 022510 (2006)

    Article  ADS  Google Scholar 

  23. Sur, C. et al. Electric quadrupole moments of the D states of alkaline-earth-metal ions. Phys. Rev. Lett. 96, 193001 (2006)

    Article  ADS  Google Scholar 

  24. Schmidt-Kaler, F. et al. How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77, 789–796 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Roos, Ch. et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83, 4713–4716 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Margolis, H. S. et al. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Science 306, 1355–1358 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Dubé, P. et al. Electric quadrupole shift cancellation in single-ion optical frequency standards. Phys. Rev. Lett. 95, 033001 (2005)

    Article  ADS  Google Scholar 

Download references


We thank H. Häffner for his contributions to the optical pumping scheme and acknowledge help with the experiment from T. Körber, W. Hänsel, D. Chek-al-kar, M. Mukherjee and P. Schmidt. We acknowledge support by the Austrian Science Fund (FWF), by the European Commission (SCALA, CONQUEST networks), and by the Institut für Quanteninformation GmbH. This material is based on work supported in part by the US Army Research Office.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. F. Roos.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roos, C., Chwalla, M., Kim, K. et al. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing