Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magma heating by decompression-driven crystallization beneath andesite volcanoes

Abstract

Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma1. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano2. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route3. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible4. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals5 to develop a method for tracking pressure–temperature–crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase–melt geothermometry to determine the temperature. These data are allied to ilmenite–magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 °C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Back-scattered electron micrographs of plagioclase-hosted melt inclusions from Mount St Helens.
Figure 2: Variation in magmatic variables.
Figure 3: Modelled variation in magmatic parameters during decompression of a generic H 2 O-saturated silicic andesite.

References

  1. Cashman, K. V. in The State of the Planet: Frontiers and Challenges in Geophysics (eds Sparks, R. S. J. & Hawkesworth, C. J.) 109–124 (AGU Monograph 150, American Geophysical Union, Washington DC, 2004)

    Book  Google Scholar 

  2. Melnik, O. & Sparks, R. S. J. Non-linear dynamics of lava dome extrusion. Nature 402, 37–41 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Melnik, O. & Sparks, R. S. J. Controls on conduit magma flow dynamics during lava dome building eruptions. J. Geophys. Res. 110, doi:10.1029/2004JB003183 (2005)

  4. Mastin, L. G. & Ghiorso, M. S. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption. Contrib. Mineral. Petrol. 141, 307–321 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Blundy, J. & Cashman, K. Rapid decompression-driven crystallisation recorded by melt inclusions from Mount St. Helens volcano. Geology 33, 793–796 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Newman, S. & Lowenstern, J. B. VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for excel. Comput. Geosci 28, 597–604 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Putirka, K. Igneous thermometers and barometers based on plagioclase + liquid equilibria: tests of some existing models and new calibrations. Am. Mineral. 90, 336–346 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Costa, F., Scaillet, B. & Pichavant, M. Petrological and experimental constraints in the pre-eruption conditions of Holocene dacite from Volcán San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J. Petrol. 45, 855–881 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Couch, S., Harford, C. L., Sparks, R. S. J. & Carroll, M. R. Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufrière Hills volcano, Montserrat. J. Petrol. 44, 1455–1475 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Hammer, J. E., Rutherford, M. J. & Hildreth, W. Magma storage prior to the 1912 eruption at Novarupta, Alaska. Contrib. Mineral. Petrol. 144, 144–162 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Holtz, F., Sato, H., Lewis, J., Behrens, H. & Nakada, S. Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part I: phase relations, phase compositions and pre-eruptive conditions. J. Petrol. 46, 319–337 (2005)

    Article  CAS  Google Scholar 

  12. Klimm, K., Holtz, F., Johannes, W. & King, P. L. Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia. Precambr. Res. 124, 327–341 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Larsen, J. F. Experimental study of plagioclase rim growth around anorthite seed crystals in rhyodacite melt. Am. Mineral. 90, 417–427 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Martel, C. et al. Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. J. Geophys. Res. 104, 29453–29470 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Martel, C. & Schmidt, B. C. Decompression experiments as an insight into ascent rates of silicic magmas. Contrib. Mineral. Petrol. 144, 397–415 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Scaillet, B. & Evans, B. W. The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-fO2-fH2O conditions of the dacite magma. J. Petrol. 40, 381–411 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Scandone, R. & Malone, S. D. Magma supply, magma discharge and readjustment of the feeding system of Mount St. Helens during 1980. J. Volcanol. Geotherm. Res. 23, 239–262 (1985)

    Article  ADS  Google Scholar 

  18. Blundy, J. & Cashman, K. Ascent-driven crystallisation of dacite magmas at Mount St. Helens, 1980–1986. Contrib. Mineral. Petrol. 140, 631–650 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Couch, S., Harford, C. L., Sparks, R. S. J. & Carroll, M. R. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411, 1037–1039 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Rutherford, M. J. & Hill, P. M. Magma ascent rates from amphibole breakdown: An experimental study applied to the 1980–1986 Mount St. Helens eruption. J. Geophys. Res. 98, 19667–19686 (1993)

    Article  ADS  CAS  Google Scholar 

  21. Venezky, D. Y. & Rutherford, M. J. Petrology and Fe-Ti oxide reequilibration of the 1991 Mount Unzen mixed magma. J. Volcanol. Geotherm. Res. 89, 213–230 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Devine, J. D., Rutherford, M. J., Norton, G. E. & Young, S. R. Magma storage region processes inferred from geochemistry of Fe-Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. J. Petrol. 44, 1375–1400 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Hildreth, W. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86, 10153–10192 (1981)

    Article  ADS  CAS  Google Scholar 

  24. Hess, K. U. & Dingwell, D. B. Viscosities of leucogranite melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300 (1996)

    CAS  Google Scholar 

  25. Bachman, O. & Dungan, M. A. Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am. Mineral. 87, 1062–1076 (2002)

    Article  ADS  Google Scholar 

  26. Ginibre, C., Kronz, A. & Wörner, G. High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contrib. Mineral. Petrol. 142, 436–448 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Humphreys, M. C. S., Kearns, S. L. & Blundy, J. D. SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis. Am. Mineral. 91, 667–679 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Bacon, C. R. & Hirschmann, M. M. Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am. Mineral. 73, 57–61 (1988)

    CAS  Google Scholar 

  29. Spencer, K. J. & Lindsley, D. H. A solution model for coexisting iron-titanium oxides. Am. Mineral. 66, 1189–1201 (1981)

    CAS  Google Scholar 

  30. Andersen, D. J. & Lindsley, D. H. Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am. Mineral. 73, 714–726 (1988)

    CAS  Google Scholar 

  31. Dirksen, O. V. et al. The 2001–2004 dome-forming eruption of Shiveluch Volcano, Kamchatka: observation, petrological investigation and numerical modelling. J. Volcanol. Geotherm. Res. 155, 201–226 (2006)

    Article  ADS  CAS  Google Scholar 

  32. Criswell, C. W. Chronology and pyroclastic stratigraphy of the May 18, 1980 eruption of Mount St. Helens, Washington. J. Geophys. Res. 92, 10237–10266 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.B. was supported by an NERC Senior Research Fellowship and M.H. by an NERC Studentship. Ion-microprobe analysis benefited greatly from the efforts of the IMF staff at Edinburgh University and from standard materials supplied by T. Sisson, P. King and R. Brooker. W. Melson and D. Pyle provided some Mount St Helens samples. Author Contributions The authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Blundy.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1a

Melt Inclusions from Mount St. Helens Volcano. (XLS 113 kb)

Supplementary Table 1b

Melt Inclusions from Shiveluch Volcano. (XLS 31 kb)

Supplementary Table 2a

Iron-titanium oxides from Mount St. Helens volcano. (XLS 51 kb)

Supplementary Table 2b

Iron-titanium oxides from Shiveluch volcano. (XLS 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blundy, J., Cashman, K. & Humphreys, M. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443, 76–80 (2006). https://doi.org/10.1038/nature05100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05100

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing