Letter | Published:

Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate

Abstract

A central goal in condensed matter and modern atomic physics is the exploration of quantum phases of matter—in particular, how the universal characteristics of zero-temperature quantum phase transitions differ from those established for thermal phase transitions at non-zero temperature. Compared to conventional condensed matter systems, atomic gases provide a unique opportunity to explore quantum dynamics far from equilibrium. For example, gaseous spinor Bose–Einstein condensates1,2,3 (whose atoms have non-zero internal angular momentum) are quantum fluids that simultaneously realize superfluidity and magnetism, both of which are associated with symmetry breaking. Here we explore spontaneous symmetry breaking in 87Rb spinor condensates, rapidly quenched across a quantum phase transition to a ferromagnetic state. We observe the formation of spin textures, ferromagnetic domains and domain walls, and demonstrate phase-sensitive in situ detection of spin vortices. The latter are topological defects resulting from the symmetry breaking, containing non-zero spin current but no net mass current4.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Stenger, J. et al. Spin domains in ground state spinor Bose–Einstein condensates. Nature 396, 345–348 (1998)

  2. 2

    Ho, T.-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998)

  3. 3

    Ohmi, T. & Machida, K. Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn 67, 1822–1825 (1998)

  4. 4

    Saito, H., Kawaguchi, Y. & Ueda, M. Breaking of chiral symmetry and spontaneous rotation in a spinor Bose-Einstein condensate. Phys. Rev. Lett. 96, 065302 (2006)

  5. 5

    Chang, M.-S. et al. Observation of spinor dynamics in optically trapped Rb Bose-Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004)

  6. 6

    Schmaljohann, H. et al. Dynamics of F = 2 spinor Bose-Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004)

  7. 7

    Klausen, N. N., Bohn, J. L. & Greene, C. H. Nature of spinor Bose-Einstein condensates in rubidium. Phys. Rev. A 64, 053602 (2001)

  8. 8

    Higbie, J. M. et al. Direct, non-destructive imaging of magnetization in a spin-1 Bose gas. Phys. Rev. Lett. 95, 050401 (2005)

  9. 9

    Pu, H. et al. Spin-mixing dynamics of a spinor Bose-Einstein condensate. Phys. Rev. A 60, 1463–1470 (1999)

  10. 10

    Robins, N. P., Zhang, W., Ostrovskaya, E. A. & Kivshar, Y. S. Modulational instability of spinor condensates. Phys. Rev. A 64, 021601(R) (2001)

  11. 11

    Saito, H. & Ueda, M. Spontaneous magnetization and structure formation in a spin-1 ferromagnetic Bose-Einstein condensate. Phys. Rev. A 72, 023610 (2005)

  12. 12

    Zhang, W. et al. Dynamical instability and domain formation in a spin-1 Bose-Einstein condensate. Phys. Rev. Lett. 95, 180403 (2005)

  13. 13

    Widera, A. et al. Coherent collisional spin dynamics in optical lattices. Phys. Rev. Lett. 95, 190405 (2005)

  14. 14

    Chang, M.-S. et al. Coherent spinor dynamics in a spin-1 Bose condensate. Nature Phys. 1, 111–116 (2005)

  15. 15

    Hall, D. S. et al. The dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

  16. 16

    Miesner, H.-J. et al. Observation of metastable states in spinor Bose-Einstein condensates. Phys. Rev. Lett. 82, 2228–2231 (1999)

  17. 17

    Stamper-Kurn, D. M. & Ketterle, W. in Coherent Matter Waves (eds Kaiser, R., Westbrook, C. & David, F.) 137–218 (Springer, New York, 2001)

  18. 18

    Goldstein, E. V. & Meystre, P. Quasiparticle instabilities in multicomponent atomic condensates. Phys. Rev. A 55, 2935–2940 (1997)

  19. 19

    Timmermans, E. Phase separation of Bose-Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1997)

  20. 20

    Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976)

  21. 21

    Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985)

  22. 22

    Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005)

  23. 23

    Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory: defect dynamics in liquid crystals. Science 251, 1336–1342 (1991)

  24. 24

    Hendry, P. C. et al. Generation of defects in superfluid 4He as an analogue of the formation of cosmic strings. Nature 368, 315–317 (1994)

  25. 25

    Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid He-3 as an analogue of cosmological defect formation. Nature 382, 334–336 (1996)

  26. 26

    Bauerle, C. et al. Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3. Nature 382, 332–334 (1996)

  27. 27

    Isoshima, T., Machida, K. & Ohmi, T. Quantum vortex in a spinor Bose-Einstein condensate. J. Phys. Soc. Jpn 70, 1604–1610 (2001)

  28. 28

    Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid helium-3. Phys. Rev. Lett. 36, 594–597 (1976)

Download references

Acknowledgements

We thank E. Mueller, J. Moore, and A. Vishwanath for comments, J. Guzman for experimental assistance, and the NSF and the David and Lucile Packard Foundation for financial support. S.R.L. acknowledges support from the NSERC.

Author information

Correspondence to D. M. Stamper-Kurn.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Direct imaging of inhomogeneous spontaneous magnetization of a spinor BEC.
Figure 2: In situ images of ferromagnetic domains and domain walls.
Figure 3: Temporal and spatial evolution of ferromagnetism in a quenched spinor BEC.
Figure 4: In situ detection of a polar-core spin vortex.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.