Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate

Abstract

A central goal in condensed matter and modern atomic physics is the exploration of quantum phases of matter—in particular, how the universal characteristics of zero-temperature quantum phase transitions differ from those established for thermal phase transitions at non-zero temperature. Compared to conventional condensed matter systems, atomic gases provide a unique opportunity to explore quantum dynamics far from equilibrium. For example, gaseous spinor Bose–Einstein condensates1,2,3 (whose atoms have non-zero internal angular momentum) are quantum fluids that simultaneously realize superfluidity and magnetism, both of which are associated with symmetry breaking. Here we explore spontaneous symmetry breaking in 87Rb spinor condensates, rapidly quenched across a quantum phase transition to a ferromagnetic state. We observe the formation of spin textures, ferromagnetic domains and domain walls, and demonstrate phase-sensitive in situ detection of spin vortices. The latter are topological defects resulting from the symmetry breaking, containing non-zero spin current but no net mass current4.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Direct imaging of inhomogeneous spontaneous magnetization of a spinor BEC.
Figure 2: In situ images of ferromagnetic domains and domain walls.
Figure 3: Temporal and spatial evolution of ferromagnetism in a quenched spinor BEC.
Figure 4: In situ detection of a polar-core spin vortex.

References

  1. Stenger, J. et al. Spin domains in ground state spinor Bose–Einstein condensates. Nature 396, 345–348 (1998)

    ADS  CAS  Article  Google Scholar 

  2. Ho, T.-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998)

    ADS  CAS  Article  Google Scholar 

  3. Ohmi, T. & Machida, K. Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn 67, 1822–1825 (1998)

    ADS  CAS  Article  Google Scholar 

  4. Saito, H., Kawaguchi, Y. & Ueda, M. Breaking of chiral symmetry and spontaneous rotation in a spinor Bose-Einstein condensate. Phys. Rev. Lett. 96, 065302 (2006)

    ADS  Article  Google Scholar 

  5. Chang, M.-S. et al. Observation of spinor dynamics in optically trapped Rb Bose-Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004)

    ADS  Article  Google Scholar 

  6. Schmaljohann, H. et al. Dynamics of F = 2 spinor Bose-Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Klausen, N. N., Bohn, J. L. & Greene, C. H. Nature of spinor Bose-Einstein condensates in rubidium. Phys. Rev. A 64, 053602 (2001)

    ADS  Article  Google Scholar 

  8. Higbie, J. M. et al. Direct, non-destructive imaging of magnetization in a spin-1 Bose gas. Phys. Rev. Lett. 95, 050401 (2005)

    ADS  CAS  Article  Google Scholar 

  9. Pu, H. et al. Spin-mixing dynamics of a spinor Bose-Einstein condensate. Phys. Rev. A 60, 1463–1470 (1999)

    ADS  CAS  Article  Google Scholar 

  10. Robins, N. P., Zhang, W., Ostrovskaya, E. A. & Kivshar, Y. S. Modulational instability of spinor condensates. Phys. Rev. A 64, 021601(R) (2001)

    ADS  Article  Google Scholar 

  11. Saito, H. & Ueda, M. Spontaneous magnetization and structure formation in a spin-1 ferromagnetic Bose-Einstein condensate. Phys. Rev. A 72, 023610 (2005)

    ADS  Article  Google Scholar 

  12. Zhang, W. et al. Dynamical instability and domain formation in a spin-1 Bose-Einstein condensate. Phys. Rev. Lett. 95, 180403 (2005)

    ADS  Article  Google Scholar 

  13. Widera, A. et al. Coherent collisional spin dynamics in optical lattices. Phys. Rev. Lett. 95, 190405 (2005)

    ADS  Article  Google Scholar 

  14. Chang, M.-S. et al. Coherent spinor dynamics in a spin-1 Bose condensate. Nature Phys. 1, 111–116 (2005)

    ADS  CAS  Article  Google Scholar 

  15. Hall, D. S. et al. The dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

    ADS  CAS  Article  Google Scholar 

  16. Miesner, H.-J. et al. Observation of metastable states in spinor Bose-Einstein condensates. Phys. Rev. Lett. 82, 2228–2231 (1999)

    ADS  CAS  Article  Google Scholar 

  17. Stamper-Kurn, D. M. & Ketterle, W. in Coherent Matter Waves (eds Kaiser, R., Westbrook, C. & David, F.) 137–218 (Springer, New York, 2001)

    Google Scholar 

  18. Goldstein, E. V. & Meystre, P. Quasiparticle instabilities in multicomponent atomic condensates. Phys. Rev. A 55, 2935–2940 (1997)

    ADS  CAS  Article  Google Scholar 

  19. Timmermans, E. Phase separation of Bose-Einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1997)

    ADS  Article  Google Scholar 

  20. Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976)

    ADS  Article  Google Scholar 

  21. Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985)

    ADS  CAS  Article  Google Scholar 

  22. Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005)

    ADS  Article  Google Scholar 

  23. Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory: defect dynamics in liquid crystals. Science 251, 1336–1342 (1991)

    ADS  CAS  Article  Google Scholar 

  24. Hendry, P. C. et al. Generation of defects in superfluid 4He as an analogue of the formation of cosmic strings. Nature 368, 315–317 (1994)

    ADS  CAS  Article  Google Scholar 

  25. Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid He-3 as an analogue of cosmological defect formation. Nature 382, 334–336 (1996)

    ADS  CAS  Article  Google Scholar 

  26. Bauerle, C. et al. Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3. Nature 382, 332–334 (1996)

    ADS  CAS  Article  Google Scholar 

  27. Isoshima, T., Machida, K. & Ohmi, T. Quantum vortex in a spinor Bose-Einstein condensate. J. Phys. Soc. Jpn 70, 1604–1610 (2001)

    ADS  CAS  Article  Google Scholar 

  28. Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid helium-3. Phys. Rev. Lett. 36, 594–597 (1976)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Mueller, J. Moore, and A. Vishwanath for comments, J. Guzman for experimental assistance, and the NSF and the David and Lucile Packard Foundation for financial support. S.R.L. acknowledges support from the NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Stamper-Kurn.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sadler, L., Higbie, J., Leslie, S. et al. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006). https://doi.org/10.1038/nature05094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05094

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing