Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Karyopherin-mediated import of integral inner nuclear membrane proteins


Targeting of newly synthesized integral membrane proteins to the appropriate cellular compartment is specified by discrete sequence elements, many of which have been well characterized. An understanding of the signals required to direct integral membrane proteins to the inner nuclear membrane (INM) remains a notable exception. Here we show that integral INM proteins possess basic sequence motifs that resemble ‘classical’ nuclear localization signals. These sequences can mediate direct binding to karyopherin-α and are essential for the passage of integral membrane proteins to the INM. Furthermore, karyopherin-α, karyopherin-β1 and the Ran GTPase cycle are required for INM targeting, underscoring parallels between mechanisms governing the targeting of integral INM proteins and soluble nuclear transport. We also provide evidence that specific nuclear pore complex proteins contribute to this process, suggesting a role for signal-mediated alterations in the nuclear pore complex to allow for passage of INM proteins along the pore membrane.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Heh1–YFP and Heh2–YFP localize to the INM in a Ran-dependent manner.
Figure 2: Kap60 directly interacts with Heh2 and is required for nuclear envelope targeting.
Figure 3: Kap60 NLSs are required for the INM localization of Heh2.
Figure 4: Heh1–YFP and Heh2–YFP are mistargeted in the absence of Nup2 and Nup170.


  1. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005)

    CAS  Article  Google Scholar 

  2. Mounkes, L., Kozlov, S., Burke, B. & Stewart, C. L. The laminopathies: nuclear structure meets disease. Curr. Opin. Genet. Dev. 13, 223–230 (2003)

    CAS  Article  Google Scholar 

  3. Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003)

    CAS  Article  Google Scholar 

  4. Soullam, B. & Worman, H. J. Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane. J. Cell Biol. 130, 15–27 (1995)

    CAS  Article  Google Scholar 

  5. Ohba, T., Schirmer, E. C., Nishimoto, T. & Gerace, L. Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J. Cell Biol. 167, 1051–1062 (2004)

    CAS  Article  Google Scholar 

  6. Mans, B. J., Anantharaman, V., Aravind, L. & Koonin, E. V. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3, 1612–1637 (2004)

    CAS  Article  Google Scholar 

  7. Rodriguez-Navarro, S., Igual, J. C. & Perez-Ortin, J. E. SRC1: an intron-containing yeast gene involved in sister chromatid segregation. Yeast 19, 43–54 (2002)

    CAS  Article  Google Scholar 

  8. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001)

    CAS  Article  Google Scholar 

  9. Fried, H. & Kutay, U. Nucleocytoplasmic transport: taking an inventory. Cell. Mol. Life Sci. 60, 1659–1688 (2003)

    CAS  Article  Google Scholar 

  10. Weis, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003)

    CAS  Article  Google Scholar 

  11. Kadowaki, T. et al. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126, 649–659 (1994)

    CAS  Article  Google Scholar 

  12. Kalderon, D., Richardson, W. D., Markham, A. F. & Smith, A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311, 33–38 (1984)

    ADS  CAS  Article  Google Scholar 

  13. Yano, R., Oakes, M. L., Tabb, M. M. & Nomura, M. Yeast Srp1p has homology to armadillo/plakoglobin/β-catenin and participates in apparently multiple nuclear functions including the maintenance of the nucleolar structure. Proc. Natl Acad. Sci. USA 91, 6880–6884 (1994)

    ADS  CAS  Article  Google Scholar 

  14. Iovine, M. K. & Wente, S. R. A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J. Cell Biol. 137, 797–811 (1997)

    CAS  Article  Google Scholar 

  15. Leslie, D. M., Grill, B., Rout, M. P., Wozniak, R. W. & Aitchison, J. D. Kap121p-mediated nuclear import is required for mating and cellular differentiation in yeast. Mol. Cell. Biol. 22, 2544–2555 (2002)

    CAS  Article  Google Scholar 

  16. Ryan, K. J. & Wente, S. R. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 12, 361–371 (2000)

    CAS  Article  Google Scholar 

  17. Nehrbass, U., Rout, M. P., Maguire, S., Blobel, G. & Wozniak, R. W. The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. J. Cell Biol. 133, 1153–1162 (1996)

    CAS  Article  Google Scholar 

  18. Aitchison, J. D., Rout, M. P., Marelli, M., Blobel, G. & Wozniak, R. W. Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J. Cell Biol. 131, 1133–1148 (1995)

    CAS  Article  Google Scholar 

  19. Miao, M., Ryan, K. J. & Wente, S. R. The integral membrane protein pom34p functionally links nucleoporin subcomplexes. Genetics 172, 1441–1457 (2006)

    CAS  Article  Google Scholar 

  20. Chial, H. J., Rout, M. P., Giddings, T. H. & Winey, M. Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J. Cell Biol. 143, 1789–1800 (1998)

    CAS  Article  Google Scholar 

  21. Vaughan, A. et al. Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J. Cell Sci. 114, 2577–2590 (2001)

    CAS  PubMed  Google Scholar 

  22. Wu, W., Lin, F. & Worman, H. J. Intracellular trafficking of MAN1, an integral protein of the nuclear envelope inner membrane. J. Cell Sci. 115, 1361–1371 (2002)

    CAS  PubMed  Google Scholar 

  23. Ostlund, C., Sullivan, T., Stewart, C. L. & Worman, H. J. Dependence of diffusional mobility of integral inner nuclear membrane proteins on A-type lamins. Biochemistry 45, 1374–1382 (2006)

    Article  Google Scholar 

  24. Horton, P. & Nakai, K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 147–152 (1997)

    CAS  PubMed  Google Scholar 

  25. Beilharz, T., Egan, B., Silver, P. A., Hofmann, K. & Lithgow, T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8219–8223 (2003)

    CAS  Article  Google Scholar 

  26. Booth, J. W., Belanger, K. D., Sannella, M. I. & Davis, L. I. The yeast nucleoporin Nup2p is involved in nuclear export of importin α/Srp1p. J. Biol. Chem. 274, 32360–32367 (1999)

    CAS  Article  Google Scholar 

  27. Gilchrist, D., Mykytka, B. & Rexach, M. Accelerating the rate of disassembly of karyopherin·cargo complexes. J. Biol. Chem. 277, 18161–18172 (2002)

    CAS  Article  Google Scholar 

  28. Hood, J. K., Casolari, J. M. & Silver, P. A. Nup2p is located on the nuclear side of the nuclear pore complex and coordinates Srp1p/importin-α export. J. Cell Sci. 113, 1471–1480 (2000)

    CAS  PubMed  Google Scholar 

  29. Solsbacher, J., Maurer, P., Vogel, F. & Schlenstedt, G. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin-α. Mol. Cell. Biol. 20, 8468–8479 (2000)

    CAS  Article  Google Scholar 

  30. Saksena, S., Summers, M. D., Burks, J. K., Johnson, A. E. & Braunagel, S. C. Importin-α16 is a translocon-associated protein involved in sorting membrane proteins to the nuclear envelope. Nature Struct. Mol. Biol. 13, 500–508 (2006)

    CAS  Article  Google Scholar 

  31. Shulga, N. & Goldfarb, D. S. Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell. Biol. 23, 534–542 (2003)

    CAS  Article  Google Scholar 

  32. Makhnevych, T., Lusk, C. P., Anderson, A. M., Aitchison, J. D. & Wozniak, R. W. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115, 813–823 (2003)

    CAS  Article  Google Scholar 

Download references


We are grateful to S. Wente, R. Wozniak, X. Zhao, M. Winey and K. Belanger for yeast strains and plasmids, and M. Rout and J. Novatt for the anti-GFP antibody and Kap95. We also thank A. North for help with the spinning disk confocal microscope, R. Peters and L. Gerace for discussions, and E. Wren for helping us launch this project. We are especially indebted to H. Shio for electron micrograph technical support. This work was supported by an NIH fellowship (to M.C.K.) and the Howard Hughes Medical Institute (to G.B. and C.P.L.).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Megan C. King or C. Lusk.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–5, Supplementary Methods, and Supplementary Tables 1 and 2. (PDF 3890 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, M., Lusk, C. & Blobel, G. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442, 1003–1007 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing