Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun

Abstract

Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars 10 times more massive than the Sun (10M), the powerful stellar radiation is expected to inhibit accretion1 and thus limit the growth of their mass. Clearly, stars with masses >10M exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion2,3, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks5,4,6 and toroids7 around very young massive stars has lent support to the idea that high-mass (8M) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude that the gas is falling inwards towards a very young star of 20M, in line with theoretical predictions of non-spherical accretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption and emission by molecular gas towards the hypercompact H ii region G24 A1.
Figure 2: Velocity field in the massive toroid G24 A1.

Similar content being viewed by others

References

  1. Kahn, F. D. Cocoons around early-type stars. Astron. Astrophys. 37, 149–162 (1974)

    ADS  Google Scholar 

  2. Yorke, H. W. & Sonnhalter, C. On the formation of massive stars. Astrophys. J. 569, 846–862 (2002)

    Article  ADS  Google Scholar 

  3. Krumholz, M. R., McKee, C. F. & Klein, R. I. How protostellar outflows help massive stars form. Astrophys. J. 618, L33–L36 (2005)

    Article  ADS  Google Scholar 

  4. Cesaroni, R. et al. A study of the Keplerian accretion disk and precessing outflow in the massive protostar IRAS 20126 + 4104. Astron. Astrophys. 434, 1039–1054 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Chini, R. et al. The formation of a massive protostar through the disk accretion of gas. Nature 429, 155–157 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Patel, N. et al. A disk of dust and molecular gas around a high-mass protostar. Nature 437, 109–111 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Beltrán, M. T. et al. Rotating disks in high-mass young stellar objects. Astrophys. J. 601, L187–L190 (2004)

    Article  ADS  Google Scholar 

  8. Cesaroni, R., Felli, M., Testi, L., Walmsley, C. M. & Olmi, L. The disk-outflow system around the high-mass (proto)star IRAS 20126 + 4104. Astron. Astrophys. 325, 725–744 (1997)

    ADS  CAS  Google Scholar 

  9. Jiang, Z. et al. A circumstellar disk associated with a massive protostellar object. Nature 437, 112–115 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Cesaroni, R. in Massive Star Birth: A Crossroads of Astrophysics (eds Cesaroni, R., Felli, M., Churchwell, E. & Walmsley, M.) 59–69 (Proc. IAU Symp. 227, Cambridge Univ. Press, Cambridge, UK, 2005)

    Google Scholar 

  11. Cesaroni, R. Outflow, infall, and rotation in high-mass star forming regions. Astrophys. Space Sci. 295, 5–17 (2005)

    Article  ADS  Google Scholar 

  12. Ho, P. T. P. & Haschick, A. D. Molecular clouds associated with compact H ii regions. III. Spin-up and collapse in the core of G10.6–0.4. Astrophys. J. 304, 501–514 (1986)

    Article  ADS  CAS  Google Scholar 

  13. Keto, E. R., Ho, P. T. P. & Haschick, A. D. Temperature and density structure of the collapsing core of G10.6–0.4. Astrophys. J. 318, 712–728 (1987)

    Article  ADS  CAS  Google Scholar 

  14. Zhang, Q. & Ho, P. T. P. Dynamical collapse in W51 massive cores: NH3 observations. Astrophys. J. 488, 241–257 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Hofner, P., Peterson, S. & Cesaroni, R. Ammonia absorption toward the ultracompact H ii regions G45.12 + 0.13 and G45.47 + 0.05. Astrophys. J. 514, 899–908 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Sollins, P. & Ho, P. T. P. The molecular accretion flow in G10.6–0.4. Astrophys. J. 630, 987–995 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Zhang, Q. in Massive Star Birth: A Crossroads of Astrophysics (eds Cesaroni, R., Felli, M., Churchwell, E. & Walmsley, M.) 135–144 (Proc. IAU Symp. 227, Cambridge Univ. Press, Cambridge, UK, 2005)

    Google Scholar 

  18. Codella, C., Testi, L. & Cesaroni, R. The molecular environment of H2O masers: VLA ammonia observations. Astron. Astrophys. 325, 282–294 (1997)

    ADS  CAS  Google Scholar 

  19. Furuya, R. S. et al. G24.78 + 0.08: A cluster of high-mass (proto)stars. Astron. Astrophys. 390, L1–L4 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Cesaroni, R., Codella, C., Furuya, R. S. & Testi, L. Anatomy of a high-mass star forming cloud: The G24.78 + 0.08 (proto)stellar cluster. Astron. Astrophys. 401, 227–242 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Beltrán, M. T. et al. A detailed study of the rotating toroids in G31.41 + 0.31 and G24.78 + 0.08. Astron. Astrophys. 435, 901–925 (2005)

    Article  ADS  Google Scholar 

  22. Ungerechts, H., Winnewisser, G. & Walmsley, C. M. Ammonia observations and temperatures in the S140/L1204 molecular cloud. Astron. Astrophys. 157, 207–216 (1986)

    ADS  CAS  Google Scholar 

  23. Cesaroni, R., Churchwell, E., Hofner, P., Walmsley, C. M. & Kurtz, S. Hot ammonia towards compact H ii regions. Astron. Astrophys. 288, 903–920 (1994)

    ADS  CAS  Google Scholar 

  24. Walmsley, M. Dense cores in molecular clouds. Rev. Mex. Astron. Astrophys. Conf. Ser. 1, 137–148 (1995).

    ADS  CAS  Google Scholar 

  25. Keto, E. On the evolution of ultracompact H ii regions. Astrophys. J. 580, 980–986 (2002)

    Article  ADS  Google Scholar 

  26. Wolfire, M. G. & Cassinelli, J. P. Conditions for the formation of massive stars. Astrophys. J. 319, 850–867 (1987)

    Article  ADS  CAS  Google Scholar 

  27. Bonnell, I. A. & Bate, M. R. Binary systems and stellar mergers in massive star formation. Mon. Not. R. Astron. Soc. 362, 915–920 (2005)

    Article  ADS  Google Scholar 

  28. McKee, C. F. & Tan, J. C. The formation of massive stars from turbulent cores. Astrophys. J. 585, 850–871 (2003)

    Article  ADS  CAS  Google Scholar 

  29. McKee, C. F. & Tan, J. C. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds. Nature 416, 59–61 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Bonnell, I. A., Vine, S. G. & Bate, M. R. Massive star formation: nurture, not nature. Mon. Not. R. Astron. Soc. 349, 735–741 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NRAO is operated by Associated University, Inc., under contract with the National Science Foundation. We thank P. Ho for suggestions that improved the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria T. Beltrán.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file provides a detailed derivation of the mass accretion rate and a discussion on the uncertainty of the value, and additional references. (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltrán, M., Cesaroni, R., Codella, C. et al. Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun. Nature 443, 427–429 (2006). https://doi.org/10.1038/nature05074

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05074

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing