Variations in solar luminosity and their effect on the Earth's climate

Abstract

Variations in the Sun's total energy output (luminosity) are caused by changing dark (sunspot) and bright structures on the solar disk during the 11-year sunspot cycle. The variations measured from spacecraft since 1978 are too small to have contributed appreciably to accelerated global warming over the past 30 years. In this Review, we show that detailed analysis of these small output variations has greatly advanced our understanding of solar luminosity change, and this new understanding indicates that brightening of the Sun is unlikely to have had a significant influence on global warming since the seventeenth century. Additional climate forcing by changes in the Sun's output of ultraviolet light, and of magnetized plasmas, cannot be ruled out. The suggested mechanisms are, however, too complex to evaluate meaningfully at present.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temporal variation of total solar irradiance, as measured by radiometers on several spacecraft since 1978.
Figure 2: An image of the solar photosphere (the surface of the solar disk seen in visible light), showing the structures responsible for the TSI variations.
Figure 3: Variations in total solar irradiance.
Figure 4: Thermal disturbance caused by a sunspot, computed as a function of distance from it and depth into the Sun18.
Figure 5: Northern Hemisphere temperatures compared to model results.

References

  1. 1

    Wigley, T. M. L. & Raper, S. C. B. Climatic change due to solar irradiance changes. Geophys. Res. Lett. 17, 2169–2172 (1990)

    Article  ADS  Google Scholar 

  2. 2

    Kasting, J. F. Planetary atmospheres: Warming early Earth and Mars. Science 276, 1213–1215 (1997)

    CAS  Article  Google Scholar 

  3. 3

    Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: Pacemaker of the Ice Ages. Science 194, 1121–1132 (1976)

    CAS  Article  ADS  Google Scholar 

  4. 4

    Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S. & Chapman, G. A. Observations of solar irradiance variability. Science 211, 700–702 (1981)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Fröhlich, C. Solar irradiance variability since 1978: Revision of the PMOD composite during solar cycle 21. Space Sci. Rev. (in the press); preprint at ftp://ftp.pmodwrc.ch/pub/Claus/ISSI_WS2005/ISSI2005a_CF.pdf (2006)

  6. 6

    Foukal, P. Solar Astrophysics 2nd edn (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  7. 7

    Foukal, P., Bernasconi, P. & Walton, S. A model of solar irradiance variation using broad band measurements of facular photometric contrast. Astrophys. J. (in the press); preprint at http://sd-www.jhuapl.edu/SBI/Pubs/Foukal_etal_ApJ_Letts_2006.pdf (2006)

  8. 8

    Foukal, P. V. & Lean, J. Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347–357 (1988)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Chapman, G. A., Cookson, A. M. & Dobias, J. J. Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541–13548 (1996)

    Article  ADS  Google Scholar 

  10. 10

    Fröhlich, C. & Lean, J. Solar radiative output and its variability: Evidence and mechanisms. Astron. Astrophys. Rev. 12, 273–320 (2004)

    Article  ADS  Google Scholar 

  11. 11

    Wenzler, T. Reconstruction of Solar Irradiance Variations in Cycles 21–23 based on Surface Magnetic Fields. PhD thesis, Eidgenössische Technische Hochschule, Zürich (2005)

    Google Scholar 

  12. 12

    Wilson, P. R. in Physics of Sunspots (eds Cram, L. & Thomas, J.) 83–97 (Sacramento Peak Observatory, Sunspot, New Mexico, 1982)

    Google Scholar 

  13. 13

    Zahid, H. J., Hudson, H. S. & Fröhlich, C. Total solar irradiance variation during rapid sunspot growth. Sol. Phys. 222, 1–15 (2004)

    Article  ADS  Google Scholar 

  14. 14

    Schatten, K. H., Mayr, H. G., Omidvar, K. & Maier, E. A hillock and cloud model for faculae. Astrophys. J. 311, 460–473 (1986)

    Article  ADS  Google Scholar 

  15. 15

    Parker, E. N. Theoretical properties of omega-loops in the convective zone of the sun. 2: The origin of enhanced solar irradiance. Astrophys. J. 440, 415–420 (1995)

    Article  ADS  Google Scholar 

  16. 16

    Schüssler, M. & Vögler, A. Magnetoconvection in a sunspot umbra. Astrophys. J. 641, L73–L76 (2006)

    Article  ADS  Google Scholar 

  17. 17

    Spruit, H. C. The flow of heat near a starspot. Astron. Astrophys. 108, 356–360 (1982)

    MathSciNet  ADS  Google Scholar 

  18. 18

    Foukal, P., Fowler, L. A. & Livshits, M. A thermal model of sunspot influence on solar luminosity. Astrophys. J. 267, 863–871 (1983)

    Article  ADS  Google Scholar 

  19. 19

    Spruit, H. C. Heat flow near obstacles in the solar convection zone. Sol. Phys. 55, 3–34 (1977)

    Article  ADS  Google Scholar 

  20. 20

    Chiang, W. H. & Foukal, P. V. The influence of faculae on sunspot heat blocking. Sol. Phys. 97, 9–20 (1985)

    Article  ADS  Google Scholar 

  21. 21

    Spruit, H. C. Pressure equilibrium and energy balance of small photospheric fluxtubes. Sol. Phys. 50, 269–295 (1976)

    Article  ADS  Google Scholar 

  22. 22

    Lites, B. W., Scharmer, G. B., Berger, T. E. & Title, A. M. Three-dimensional structure of the active region photosphere as revealed by high angular resolution. Sol. Phys. 221, 65–84 (2004)

    Article  ADS  Google Scholar 

  23. 23

    Carlsson, M., Stein, R. F., Nordlund, Å. & Scharmer, G. B. Observational manifestations of solar magnetoconvection: Center-to-limb variation. Astrophys. J. 610, L137–L140, doi:10.1086/423305 (2004)

    Article  ADS  Google Scholar 

  24. 24

    Fowler, L. A., Foukal, P. V. & Duvall, T. L. Jr Sunspot bright rings and the thermal diffusivity of solar convection. Sol. Phys. 84, 33–44 (1983)

    Article  ADS  Google Scholar 

  25. 25

    Rast, M. P. et al. Bright rings around sunspots. Nature 401, 678–680 (1999)

    CAS  Article  ADS  Google Scholar 

  26. 26

    Foukal, P. V. & Fowler, L. A. A photometric study of heat flow at the solar photosphere. Astrophys. J. 281, 442–454 (1984)

    CAS  Article  ADS  Google Scholar 

  27. 27

    Spruit, H. in Sun in Time (eds Sonnet, C., Giampapa, M. S. & Matthews, M. S.) 118–158 (Univ. Arizona Press, Tucson, 1991)

    Google Scholar 

  28. 28

    Rosenthal, C. S., Christensen-Dalsgaard, J., Nordlund, Å., Stein, R. F. & Trampedach, R. Convective contributions to the frequencies of solar oscillations. Astron. Astrophys. 351, 689–700 (1999)

    ADS  Google Scholar 

  29. 29

    Petro, L. D., Foukal, P. V. & Kurucz, R. L. Photospheric limb-darkening signatures of global structure variations. Sol. Phys. 98, 23–38 (1985)

    Article  ADS  Google Scholar 

  30. 30

    Chiang, W.-H., Petro, L. D. & Foukal, P. V. A photometric search for solar giant convection cells. Sol. Phys. 110, 129–138 (1987)

    CAS  Article  ADS  Google Scholar 

  31. 31

    Woodard, M. F. & Libbrecht, K. G. Spatial and temporal variations in the solar brightness. Sol. Phys. 212, 51–64 (2003)

    Article  ADS  Google Scholar 

  32. 32

    Livingston, W. & Wallace, L. The Sun's immutable basal quiet atmosphere. Sol. Phys. 212, 227–237 (2003)

    CAS  Article  ADS  Google Scholar 

  33. 33

    Antia, H. M. Does the Sun shrink with increasing magnetic activity? Astrophys. J. 590, 567–572 (2003)

    Article  ADS  Google Scholar 

  34. 34

    Kuhn, J. R., Bush, R. I., Emilio, M. & Scherrer, P. H. On the constancy of the solar diameter II. Astrophys. J. 613, 1241–1252 (2004)

    Article  ADS  Google Scholar 

  35. 35

    Brown, T. M. & Christensen-Dalsgaard, J. Accurate determination of the solar photospheric radius. Astrophys. J. 500, L195–L199 (1998)

    Article  ADS  Google Scholar 

  36. 36

    Sofia, S. Global variability of the Sun. Mem. Soc. Astron. Ital. 69, 531–537 (1998)

    ADS  Google Scholar 

  37. 37

    Sofia, S. Variations of total solar irradiance produced by structural changes of the solar interior. Eos 85, 217–221 (2004)

    Article  ADS  Google Scholar 

  38. 38

    Egidi, A. et al. High-precision measurements of the solar diameter and oblateness by the Solar Disk Sextant (SDS) Experiment. Sol. Phys. 235, 407–418 (2006)

    Article  ADS  Google Scholar 

  39. 39

    Gilliland, R. L. Theoretical interpretation of the variability of global solar properties. Adv. Space Res. 8, 151–155 (1988)

    Article  ADS  Google Scholar 

  40. 40

    Kuhn, J. R., Bush, R. I., Scherrer, P. & Scheick, X. The Sun's shape and brightness. Nature 392, 155–157 (1998)

    CAS  Article  ADS  Google Scholar 

  41. 41

    Goldreich, P., Murray, N., Willette, G. & Kumar, P. Implications of solar p-mode frequency shifts. Astrophys. J. 370, 752–762 (1991)

    Article  ADS  Google Scholar 

  42. 42

    Libbrecht, K. C. & Woodard, M. F. Solar-cycle effects on solar oscillation frequencies. Nature 345, 779–782 (1990)

    Article  ADS  Google Scholar 

  43. 43

    Dziembowski, W. A. & Goode, P. R. Sources of oscillation frequency increase with rising solar activity. Astrophys. J. 625, 548–555 (2005)

    Article  ADS  Google Scholar 

  44. 44

    Spruit, H. C. Origin of the torsional oscillation pattern of solar rotation. Sol. Phys. 213, 1–21 (2003)

    Article  ADS  Google Scholar 

  45. 45

    Radick, R. R., Lockwood, G. W., Skiff, B. A. & Baliunas, S. L. Patterns of variation among Sun-like stars. Astrophys. J. Suppl. 118, 239–258 (1998)

    Article  ADS  Google Scholar 

  46. 46

    Lean, J., Beer, J. & Bradley, R. Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995)

    Article  ADS  Google Scholar 

  47. 47

    Lean, J. L., Wang, Y.-M. & Sheeley, N. R. The effect of increasing solar activity on the Sun's total and open magnetic flux during multiple cycles: Implications for solar forcing of climate. Geophys. Res. Lett. 29, 2224, doi:10.1029/2002GL015880 (2002)

    Article  ADS  Google Scholar 

  48. 48

    Foukal, P., North, G. & Wigley, T. M. L. A stellar view on solar variations and climate. Science 306, 68–69 (2004)

    CAS  Article  Google Scholar 

  49. 49

    Foukal, P. & Milano, L. A measurement of the quiet network contribution to solar irradiance variation. Geophys. Res. Lett. 28, 883–886 (2001)

    Article  ADS  Google Scholar 

  50. 50

    Hoyt, D. V. & Schatten, K. H. A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. 98, 18895–18906 (1993)

    Article  ADS  Google Scholar 

  51. 51

    Solanki, S. & Fligge, M. Solar irradiance since 1874 revisited. Geophys. Res. Lett. 25, 341–344 (1998)

    Article  ADS  Google Scholar 

  52. 52

    Lockwood, M., Stamper, R. & Wild, M. A doubling of the Sun's coronal magnetic field during the past 100 years. Nature 399, 437–439 (1999)

    CAS  Article  ADS  Google Scholar 

  53. 53

    Foukal, P. What determines the relative areas of spots and faculae on Sun-like stars? Astron. Astrophys. 500, 958–965 (1998)

    ADS  Google Scholar 

  54. 54

    Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004)

    CAS  Article  ADS  Google Scholar 

  55. 55

    Muscheler, R., Joos, F., Müller, S. & Snowball, I. Climate: How unusual is today's solar activity? Nature 436, E4–E5 (2005)

    Article  Google Scholar 

  56. 56

    Briffa, K. R. et al. Low-frequency temperature variations from a northern tree ring density network. J. Geophys. Res. 106, 2929–2942, doi:10.1029/2000JD900617 (2001)

    Article  ADS  Google Scholar 

  57. 57

    Crowley, T. J. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000)

    CAS  Article  ADS  Google Scholar 

  58. 58

    Esper, J., Cook, E. R. & Schweingruber, F. H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295, 2250–2253 (2002)

    CAS  Article  ADS  Google Scholar 

  59. 59

    Jones, P. D., Osborn, T. J. & Briffa, K. R. The evolution of climate over the last millennium. Science 292, 662–667 (2001)

    CAS  Article  ADS  Google Scholar 

  60. 60

    Mann, M. E., Bradley, R. S. & Hughes, M. K. Northern Hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 26, 759–762 (1999)

    Article  ADS  Google Scholar 

  61. 61

    Mann, M. E. & Jones, P. D. Global surface temperatures over the past two millennia. Geophys. Res. Lett. 30, 1820, doi:10.1029/2003GL017814 (2003)

    ADS  Google Scholar 

  62. 62

    Moberg, A., Sonechkin, D., Holmgren, K., Datsenko, N. & Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005)

    CAS  Article  ADS  Google Scholar 

  63. 63

    Wigley, T. M. L. & Raper, S. C. B. Interpretation of high projections for global-mean warming. Science 293, 451–454 (2001)

    CAS  Article  ADS  Google Scholar 

  64. 64

    Cubasch, U. & Meehl, G. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 525–582 (Cambridge Univ. Press, Cambridge, UK, 2001)

    Google Scholar 

  65. 65

    Raper, S. C. B., Gregory, J. M. & Osborn, T. J. Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results. Clim. Dyn. 17, 601–613 (2001)

    Article  Google Scholar 

  66. 66

    Wigley, T. M. L., Ammann, C. M., Santer, B. D. & Raper, S. C. B. Effect of climate sensitivity on the response to volcanic forcing. J. Geophys. Res. 110, D09107, doi:10.1029/2004JD005557 (2005)

    Article  ADS  Google Scholar 

  67. 67

    Harvey, L. D. D. et al. in IPCC Technical Paper 2 1–50 (eds Houghton, J. T. et al.) (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 1997)

    Google Scholar 

  68. 68

    Ammann, C. M., Meehl, G. A., Washington, W. M. & Zender, C. S. A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett. 30, 1657, doi:10.1029/2003GL016875 (2003)

    Article  ADS  Google Scholar 

  69. 69

    Lean, J. Evolution of the Sun's spectral irradiance since the Maunder Minimum. Geophys. Res. Lett. 27, 2425–2428 (2000)

    CAS  Article  ADS  Google Scholar 

  70. 70

    Bard, E., Raisbeck, G. M., Yiou, F. & Jouzel, J. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth Planet. Sci. Lett. 150, 453–462 (1997)

    CAS  Article  ADS  Google Scholar 

  71. 71

    Fisk, L. A. et al. Global processes that determine cosmic ray modulation. Space Sci. Rev. 83, 179–214 (1998)

    Article  ADS  Google Scholar 

  72. 72

    Field, C., Schmidt, G., Koch, D. & Salyk, C. Modeling production and climate-related impacts on 10Be concentration in ice cores. J. Geophys. Res. (in the press); preprint at http://pubs.giss.nasa.gov/docs/notyet/2006_inpress_Field_etal.pdf (2006)

  73. 73

    Bond, G. et al. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136 (2001)

    CAS  Article  ADS  Google Scholar 

  74. 74

    Hu, F. S. et al. Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301, 1890–1893 (2003)

    CAS  Article  ADS  Google Scholar 

  75. 75

    Shindell, D. T., Schmidt, G. A., Miller, R. L. & Mann, M. E. Volcanic and solar forcing of climate change during the preindustrial era. J. Clim. 16, 4094–4107 (2003)

    Article  ADS  Google Scholar 

  76. 76

    Harrison, R. G. The global atmospheric electrical circuit and climate. Surv. Geophys. 25, 441–484, doi:10.1007/s10712-004-5439-8 (2004)

    Article  ADS  Google Scholar 

  77. 77

    Haigh, J. D. The effects of solar variability on the Earth's climate. Phil. Trans. R. Soc. A 361, 95–111 (2003)

    Article  ADS  Google Scholar 

  78. 78

    Foukal, P. A comparison of variable solar total and ultraviolet irradiance outputs in the 20th century. Geophys. Res. Lett. 29, 2089, doi:10.1029/2002GL015474 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.F. acknowledges support by NASA; T.M.L.W. was supported by the NOAA Office of Global Programs. TSI research at PMOD/WRC is supported by the Swiss National Science Foundation. Author Contributions Author order is alphabetic. P.F. and H.S. contributed the theory of solar luminosity variation, T.M.L.W. the climate modelling and C.F. the consolidated irradiance measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Spruit.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foukal, P., Fröhlich, C., Spruit, H. et al. Variations in solar luminosity and their effect on the Earth's climate. Nature 443, 161–166 (2006). https://doi.org/10.1038/nature05072

Download citation

Further reading

  • New Zealand ophthalmologists' opinions and behaviours on climate, carbon and sustainability

    • Pratik Chandra
    • , Jesse Gale
    •  & Neil Murray

    Clinical & Experimental Ophthalmology (2020)

  • The Polarimetric and Helioseismic Imager on Solar Orbiter

    • S. K. Solanki
    • , J. C. del Toro Iniesta
    • , J. Woch
    • , A. Gandorfer
    • , J. Hirzberger
    • , A. Alvarez-Herrero
    • , T. Appourchaux
    • , V. Martínez Pillet
    • , I. Pérez-Grande
    • , E. Sanchis Kilders
    • , W. Schmidt
    • , J. M. Gómez Cama
    • , H. Michalik
    • , W. Deutsch
    • , G. Fernandez-Rico
    • , B. Grauf
    • , L. Gizon
    • , K. Heerlein
    • , M. Kolleck
    • , A. Lagg
    • , R. Meller
    • , R. Müller
    • , U. Schühle
    • , J. Staub
    • , K. Albert
    • , M. Alvarez Copano
    • , U. Beckmann
    • , J. Bischoff
    • , D. Busse
    • , R. Enge
    • , S. Frahm
    • , D. Germerott
    • , L. Guerrero
    • , B. Löptien
    • , T. Meierdierks
    • , D. Oberdorfer
    • , I. Papagiannaki
    • , S. Ramanath
    • , J. Schou
    • , S. Werner
    • , D. Yang
    • , A. Zerr
    • , M. Bergmann
    • , J. Bochmann
    • , J. Heinrichs
    • , S. Meyer
    • , M. Monecke
    • , M.-F. Müller
    • , M. Sperling
    • , D. Álvarez García
    • , B. Aparicio
    • , M. Balaguer Jiménez
    • , L. R. Bellot Rubio
    • , J. P. Cobos Carracosa
    • , F. Girela
    • , D. Hernández Expósito
    • , M. Herranz
    • , P. Labrousse
    • , A. López Jiménez
    • , D. Orozco Suárez
    • , J. L. Ramos
    • , J. Barandiarán
    • , L. Bastide
    • , C. Campuzano
    • , M. Cebollero
    • , B. Dávila
    • , A. Fernández-Medina
    • , P. García Parejo
    • , D. Garranzo-García
    • , H. Laguna
    • , J. A. Martín
    • , R. Navarro
    • , A. Núñez Peral
    • , M. Royo
    • , A. Sánchez
    • , M. Silva-López
    • , I. Vera
    • , J. Villanueva
    • , J.-J. Fourmond
    • , C. Ruiz de Galarreta
    • , M. Bouzit
    • , V. Hervier
    • , J. C. Le Clec’h
    • , N. Szwec
    • , M. Chaigneau
    • , V. Buttice
    • , C. Dominguez-Tagle
    • , A. Philippon
    • , P. Boumier
    • , R. Le Cocguen
    • , G. Baranjuk
    • , A. Bell
    • , Th. Berkefeld
    • , J. Baumgartner
    • , F. Heidecke
    • , T. Maue
    • , E. Nakai
    • , T. Scheiffelen
    • , M. Sigwarth
    • , D. Soltau
    • , R. Volkmer
    • , J. Blanco Rodríguez
    • , V. Domingo
    • , A. Ferreres Sabater
    • , J. L. Gasent Blesa
    • , P. Rodríguez Martínez
    • , D. Osorno Caudel
    • , J. Bosch
    • , A. Casas
    • , M. Carmona
    • , A. Herms
    • , D. Roma
    • , G. Alonso
    • , A. Gómez-Sanjuan
    • , J. Piqueras
    • , I. Torralbo
    • , B. Fiethe
    • , Y. Guan
    • , T. Lange
    • , H. Michel
    • , J. A. Bonet
    • , S. Fahmy
    • , D. Müller
    •  & I. Zouganelis

    Astronomy & Astrophysics (2020)

  • Analysis of the Components of a Different Physical Nature in the Interannual Variability of the Total Solar Irradiance Flux

    • V. M. Fedorov

    Solar System Research (2019)

  • A Decline Phase Modeling for the Prediction of Solar Cycle 25

    • Y. B. Han
    •  & Z. Q. Yin

    Solar Physics (2019)

  • Variability in the Northern North Atlantic and Arctic Oceans Across the Last Two Millennia: A Review

    • P. Moffa‐Sánchez
    • , E. Moreno‐Chamarro
    • , D. J. Reynolds
    • , P. Ortega
    • , L. Cunningham
    • , D. Swingedouw
    • , D. E. Amrhein
    • , J. Halfar
    • , L. Jonkers
    • , J. H. Jungclaus
    • , K. Perner
    • , A. Wanamaker
    •  & S. Yeager

    Paleoceanography and Paleoclimatology (2019)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing