Abstract
We describe devices in which optics and fluidics are used synergistically to synthesize novel functionalities. Fluidic replacement or modification leads to reconfigurable optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly compact and integrated devices. We categorize optofluidics according to three broad categories of interactions: fluid–solid interfaces, purely fluidic interfaces and colloidal suspensions. We describe examples of optofluidic devices in each category.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Structural colour enhanced microfluidics
Nature Communications Open Access 19 May 2022
-
Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface
Nature Communications Open Access 08 December 2021
-
Laser nano-filament explosion for enabling open-grating sensing in optical fibre
Nature Communications Open Access 03 November 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Ronchi, V. Giovan Battista Amici's contribution to the advances of optical microscopy. Physis 11, 520–533 (1969).
Wood, R. W. Astrophys. J. The mercury paraboloid as a reflecting telescope. 29, 164–176 (1909).
Haas, W. E. Liquid-crystal display research — the first 15 years. Mol. Cryst. Liq. Cryst. 94, 1–31 (1983).
Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).
Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).
Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).
Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).
Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).
Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analyt. Chem. 70, 4974–4984 (1998).
Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).
McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).
Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).
Beebe, D. J. et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc. Natl Acad. Sci. USA 97, 13488–13493 (2000).
Fiorini, G. S., Lorenz, R. M., Kuo, J. S. & Chiu, D. T. Rapid prototyping of thermoset polyester microfluidic devices. Anal. Chem. 76, 4697–4704 (2004).
Sudarsan, A. P., Wang, J. & Ugaz, V. M. Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems. Anal. Chem. 77, 5167–5173 (2005).
Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent resistant photocurable 'liquid teflon for microfluidic device fabrication'. J. Am. Chem. Soc. 126, 2322–2323 (2004).
Xia, Y. N. et al. Complex optical surfaces formed by replica molding against elastomeric masters. Science 273, 347–349 (1996).
Gambin, Y., Legrand, O. & Quake, S. R. Microfabricated rubber microscope using soft solid immersion lenses. Appl. Phys. Lett. 88, 174102 (2006).
Introducing the Agilent Photomic Switching Platform [online] http://physics.pdx.edu/~larosaa/Agilent_All_Optical_Network.htm
Campbell, K. et al. A microfluidic 2×2 optical switch. Appl. Phys. Lett. 85, 6119–6121 (2004).
Pang, L., Levy, U., Campbell, K., Groisman, A. & Fainman, Y. Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. Opt. Express 13, 9003–9013 (2005).
Zhang, D. Y., Justis, N. & Lo, Y. H. Fluidic adaptive lens of transformable lens type. Appl. Phys. Lett. 84, 4194–4196 (2004).
Grillet, C. et al. Compact tunable microfluidic interferometer. Opt. Express 12, 5440–5447 (2004).
Heng, X. et al. Optofluidic microscopy — a method for implementing a high resolution optical microscope on a chip. Lab Chip (submitted).
Domachuk, P., Littler, I. C. M., Cronin-Golomb, M. & Eggleton, B. J. Compact resonant integrated microfluidic refractometer. Appl. Phys. Lett. 88, 093513 (2006).
Liang, W., Huang, Y. Y., Xu, Y., Lee, R. K. & Yariv, A. Appl. Phys. Lett. 86, 151122 (2005).
Levy, U., Campbell, K., Groisman, A., Mookherjea, S. & Fainman, Y. On-chip microfluidic tuning of an optical microring resonator Appl. Phys. Lett. 88, 111107–111109 (2006).
Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15 (1999).
Schuck, P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).
Vo-Dinh, T. Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Analyt. Chem. 17, 557–582 (1998).
Armani, A. M., Armani, D. K., Min, B., Vahala, K. J. & Spillane, S. M. Ultra-high-Q microcavity operation in H2O and D2O. Appl. Phys. Lett. 87, 151118 (2005).
Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
Wang, X., Wilson, D., Muller, R., Maker, P. & Psaltis, D. Liquid-crystal blazed-grating beam deflector. Appl. Opt. 39, 6545–6555 (2000).
Mach, P. et al. Tunable microfluidic optical fiber. Appl. Phys. Lett. 80, 4294–4296 (2002).
Li, Z. Y., Zhang, Z. Y., Emery, T., Scherer, A. & Psaltis, D. Single mode optofluidic distributed feedback dye laser. Opt. Express 14, 696–701 (2006).
Galas, J. C., Torres, J., Belotti, M., Kou, Q. & Chen, Y. Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl. Phys. Lett. 86, 264101 (2005).
Vezenov, D. V. et al. A low-threshold, high-efficiency microfluidic waveguide laser. J. Am. Chem. Soc. 127, 8952–8953 (2005).
Helbo, B., Kragh, S., Kjeldsen, B. G., Reimers, J. L. & Kristensen, A. Investigation of the dye concentration influence on the lasing wavelength and threshold for a microfluidic dye laser. Sens. Actuators A Phys. 111, 21–25 (2004).
Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton Univ. Press, Princeton, New Jersey, 1995).
Domachuk, P., Nguyen, H. C., Eggleton, B. J., Straub, M. & Gu, M. Microfluidic tunable photonic band-gap device. Appl. Phys. Lett. 84, 1838–1840 (2004).
Erickson, D., Rockwood, T., Emery, T., Scherer, A. & Psaltis, D. Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).
Maune, B. et al. Liquid-crystal electric tuning of a photonic crystal laser. Appl. Phys. Lett. 85, 360–362 (2004).
Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).
Dowling, J. P., Scalora, M., Bloemer, M. J. & Bowden, C. M. The photonic band edge laser: a new approach to gain enhancement. J. Appl. Phys. 75, 1896–1899 (1994).
Shinn, A. & Robertson, W. M. Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sens. Actuators B Chem. 105, 360–364 (2005).
Mookherjea, S. & Yariv, A. Coupled-resonator optical waveguides. IEEE J. Select. Topics Quantum Electron. 8, 448–456 (2002).
Knight, J. C., Broeng, J., Birks, T. A. & Russel, P. S. J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998).
Cattaneo, F. et al. Digitally tunable microfluidic optical fiber devices. J. Microelectromech. Syst. 12, 907–912 (2003).
Xu, F. et al. Fabrication, modeling, and characterization of form-birefringent nanostructures. Opt. Lett. 20, 2457–2459 (1995).
Wolfe, D. B. et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl Acad. Sci. USA 101, 12434–12438 (2004).
Vezenov, D. V., Mayers, B. T., Wolfe, D. B. & Whitesides, G. M. Integrated fluorescent light source for optofluidic applications. Appl. Phys. Lett. 86, 041104 (2005).
Mugele, F. & Baret, J. C. Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705–R774 (2005).
Hayes, R. A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383–385 (2003).
Groisman, A., Enzelberger, M. & Quake, S. R. Microfluidic memory and control devices. Science 300, 955–958 (2003).
Wolfe, D. B. et al. Diffusion-controlled optical elements for optofluidics. Appl. Phys. Lett. 87, 181105 (2005).
van der Hulst, H. C. Light Scattering by Small Particles (Dover Publications, New York, 1957).
Domachuk, P. et al. Application of optical trapping to beam manipulation in optofluidics. Opt. Express 13, 7265–7275 (2005).
Brody, J. P. & Quake, S. R. A self-assembled microlensing rotational probe. Appl. Phys. Lett. 74, 144–146 (1999).
Trindade, T., O'Brien, P. & Pickett, N. L. Chem. Mater. 13, 3843–3858 (2001).
Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2005).
Aizpurua, J. et al. Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003).
Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).
Adleman, J. R., Eggert, H. A., Buse, K. & Psaltis, D. Holographic grating formation in a colloidal suspension of silver nanoparticles. Opt. Lett. 31, 447–449 (2006).
Liu, G. L., Kim, J., Lu, Y. & Lee, L. P. Optofluidic control using photothermal nanoparticles. Nature Mater. 5, 27–32 (2006).
Whitesides, G. et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl Acad. Sci. USA 34, 12434–12438 (2004).
Erickson, D. Spectrographic microfluidic memory. Proc. ICMM June 13–15 2005, Canada.
Acknowledgements
This work is funded by the Defense Advanced Research Projects Agency (DARPA) Center for Optofluidic Integration, USA. We thank J. Adleman, X. Heng, Y. Fainman and D. Erickson for numerous discussions and their assistance.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Stephen R. Quake is a founder and equity holder in companies that operate in the areas of optics and microfluidics.
Additional information
Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.
Rights and permissions
About this article
Cite this article
Psaltis, D., Quake, S. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006). https://doi.org/10.1038/nature05060
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature05060
This article is cited by
-
Autonomous and directional flow of water and transport of particles across a subliming dynamic crystal surface
Nature Chemistry (2023)
-
Metasurface optofluidics for dynamic control of light fields
Nature Nanotechnology (2022)
-
Structural colour enhanced microfluidics
Nature Communications (2022)
-
Tunable Terahertz Wavelength Conversion Based on Optofluidic Infiltrated Rib Silicon Waveguides
Silicon (2022)
-
Laser nano-filament explosion for enabling open-grating sensing in optical fibre
Nature Communications (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.