Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous skyrmion ground states in magnetic metals


Since the 1950s, Heisenberg and others have addressed the problem of how to explain the appearance of countable particles in continuous fields1. Stable localized field configurations were searched for an ingredient for a general field theory of elementary particles, but the majority of nonlinear field models were unable to predict them. As an exception, Skyrme succeeded in describing nuclear particles as localized states, so-called ‘skyrmions’2. Skyrmions are a characteristic of nonlinear continuum models ranging from microscopic to cosmological scales3,4,5,6. Skyrmionic states have been found under non-equilibrium conditions, or when stabilized by external fields or the proliferation of topological defects. Examples are Turing patterns in classical liquids7, spin textures in quantum Hall magnets8, or the blue phases in liquid crystals9. However, it has generally been assumed that skyrmions cannot form spontaneous ground states, such as ferromagnetic or antiferromagnetic order, in magnetic materials. Here, we show theoretically that this assumption is wrong and that skyrmion textures may form spontaneously in condensed-matter systems with chiral interactions without the assistance of external fields or the proliferation of defects. We show this within a phenomenological continuum model based on a few material-specific parameters that can be determined experimentally. Our model has a condition not considered before: we allow for softened amplitude variations of the magnetization, characteristic of, for instance, metallic magnets. Our model implies that spontaneous skyrmion lattice ground states may exist generally in a large number of materials, notably at surfaces and in thin films, as well as in bulk compounds, where a lack of space inversion symmetry leads to chiral interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three chiral modulated structures for noncentrosymmetric ferromagnets and comparison of their energy density.
Figure 2: Phase diagram of a chiral ferromagnet in terms of temperature versus longitudinal stiffness parameter ( T, η).
Figure 3: Details of skyrmion solutions for η = 0.4 and b = 0.05 at various temperatures.
Figure 4: Structure of a two-dimensional skyrmion lattice, derived as a minimum energy solution for the model's equation (1) with Dzyaloshinskii–Moriya interactions: equation (4).

Similar content being viewed by others


  1. Heisenberg, W. Einführung in die einheitliche Feldtheorie der Elementarteilchen (Hirzel, Stuttgart, 1967)

    Google Scholar 

  2. Skyrme, T. H. A non-linear field theory. Proc. R. Soc. Lond. Ser. A 260, 127–138 (1961)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Durrer, R., Kunz, M. & Melchiorri, A. Cosmic structure formation with topological defects. Phys. Rep. 364, 1–81 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Bäuerle, C. et al. Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He. Nature 382, 332–334 (1996)

    Article  ADS  Google Scholar 

  5. Brey, L., Fertig, H. A., Cote, R. & MacDonald, A. H. Skyrme crystal in a two-dimensional electron gas. Phys. Rev. Lett. 75, 2562–2565 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Al'Khawaja, U. & Stoof, H. T. C. Skyrmions in a ferromagnetic Bose-Einstein condensate. Nature 411, 918–920 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 852–1112 (1993)

    Article  ADS  Google Scholar 

  8. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to the fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–19426 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Wright, D. C. & Mermin, N. D. Crystalline liquids—the blue phases. Rev. Mod. Phys. 61, 385–432 (1989)

    Article  ADS  CAS  Google Scholar 

  10. Hobart, R. H. On instability of a class of unitary field models. Proc. Phys. Soc. Lond. 82, 201–202 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. Derrick, G. H. Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1253 (1964)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Bogdanov, A. New localized solutions of the nonlinear field-equations. JETP Lett. 62, 247–251 (1995)

    ADS  MathSciNet  Google Scholar 

  13. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989)

    Google Scholar 

  15. Dzyaloshinskii, I. E. Theory of helicoidal structures in antiferromagnets. Sov. Phys. JETP 19, 960–971 (1964)

    Google Scholar 

  16. Bak, P. & Jensen, M. H. Theory of helical magnetic-structures and phase-transitions in MnSi and FeGe. J. Phys. C 13, L881–L885 (1980)

    Article  ADS  CAS  Google Scholar 

  17. Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174–1183 (1957)

    Google Scholar 

  18. Bogdanov, A. N., Rößler, U. K. & Pfleiderer, C. Modulated and localized structures in cubic helimagnets. Physica B 359–361, 1162–1164 (2005)

    Article  ADS  Google Scholar 

  19. Pfleiderer, C., Julian, S. R. & Lonzarich, G. G. Non-Fermi-liquid nature of the nomal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Pfleiderer, C. et al. Partial order in the non-Fermi-liquid phase of MnSi. Nature 427, 227–231 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Tewari, S., Belitz, D. & Kirkpatrick, T. R. Blue quantum fog: chiral condensation in quantum helimagnets. Phys. Rev. Lett. 96, 047207 (2006)

    Article  ADS  Google Scholar 

  22. Binz, B., Vishwanath, A. & Aji, V. Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. Phys. Rev. Lett. 96, 207202 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Bogdanov, A. N., Rößler, U. K., Wolf, M. & Müller, K.-H. Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets. Phys. Rev. B 66, 214410 (2002)

    Article  ADS  Google Scholar 

  24. Fert, A. Metallic multilayers. in Materials Science Forum (eds Chamberod, A. & Hillairat, J.) 59–60, 439 (1990)

    Google Scholar 

  25. Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics Ch. 2 (Cambridge Univ. Press, Cambridge, UK, 1995)

    Book  Google Scholar 

  27. Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Real-space observation of helical spin order. Science 311, 359–361 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Hornreich, R. M., Kugler, M. & Shtrikman, S. Localized instabilities and the order-disorder transition in cholesteric liquid crystals. Phys. Rev. Lett. 48, 1404–1407 (1982)

    Article  ADS  CAS  Google Scholar 

  29. Lebech, B. in Recent Advances in Magnetism of Transition Metal Compounds (eds Kotani, A. & Suzuki, N.) 167–178 (World Scientific, Singapore, 1993)

    Book  Google Scholar 

Download references


The permanent address of A.N.B. is the Donetsk Institute for Physics and Technology, Donetsk, Ukraine. We wish to thank B. Binz, H. Eschrig, I. Fischer, A. Möbius, A. Rosch, H. von Löhneysen, M. Vojta and W. Zwerger for support and discussions. We are particularly grateful to P. Böni for discussions on his studies of longitudinal magnetic fluctuations in EuS, Ni and MnSi. A.N.B. thanks the DFG-Graduiertenkolleg GRK 284 ‘Kollektive Pänomene im Festkörper’ for financial support. C.P. acknowledges support in the form of a Helmholtz-Hochschul-Nachwuchsgruppe at the Universität Karlsruhe in the initial part of this project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. Pfleiderer.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Discussion, Supplementary Equations and additional references. (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rößler, U., Bogdanov, A. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing