Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The rapid formation of a large rotating disk galaxy three billion years after the Big Bang


Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe1,2,3. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks—the primary components of present-day galaxies—were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models4,5,6,7. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Velocity maps of Hα emission in BzK-15504 ( z = 2.3834).
Figure 2: Velocity and intensity distributions along the major and minor axes of the source.
Figure 3: Two-dimensional distributions of first and second moments of the Hα velocity distribution.


  1. White, S. D. M. & Rees, M. J. Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  2. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985)

    Article  ADS  CAS  Google Scholar 

  3. Ellis, R. in Galaxies at High Redshift (eds Perez-Fournon, I., Balcells, M., Moreno-Insertis, F. & Sanchez, F.) 1–28 (Cambridge Univ. Press, Cambridge, 2003)

    Google Scholar 

  4. Fontana, A. et al. The K20 survey. VI. The distribution of the stellar masses in galaxies up to z ≥ 2. Astron. Astrophys. 424, 23–42 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Chapman, S. C., Blain, A. W., Smail, I. & Ivison, R. J. A redshift survey of the submillimeter galaxy population. Astrophys. J. 622, 772–796 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Cimatti, A. et al. Old galaxies in the young Universe. Nature 430, 184–187 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Glazebrook, K. et al. A high abundance of massive galaxies 3–6 billion years after the Big Bang. Nature 430, 181–184 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Eisenhauer, F. et al. SINFONI—Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT. SPIE 4841, 1548–1561 (2003)

    ADS  Google Scholar 

  9. Bonnet, H. et al. First light of SINFONI at the VLT. Messenger 117, 17–24 (2004)

    ADS  Google Scholar 

  10. Förster Schreiber, N. M. et al. SINFONI integral field spectroscopy of z2 UV-selected galaxies: rotation curves and dynamical evolution. Astrophys. J. 645, 1062–1075 (2006)

    Article  ADS  Google Scholar 

  11. Daddi, E. et al. A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4 ≤ z ≤ 2.5. Astrophys. J. 617, 746–764 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Kong, X. et al. A wide area survey for high-redshift massive galaxies. I. Number counts and clustering of BzKs and EROs. Astrophys. J. 638, 72–87 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Ganda, K. et al. Late-type galaxies observed with SAURON: two-dimensional stellar and emission-line kinematics of 18 spirals. Mon. Not. R. Astron. Soc. 367, 46–78 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Daigle, O. et al. α kinematics of the SINGS nearby galaxies survey. I. Mon. Not. R. Astron. Soc. 367, 469–512 (2006)

    Article  ADS  CAS  Google Scholar 

  15. van der Kruit, P. & Allen, R. The kinematics of spiral and irregular galaxies. Annu. Rev. Astron. Astrophys 16, 103–139 (1978)

    Article  ADS  Google Scholar 

  16. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964)

    Article  ADS  Google Scholar 

  17. Kennicutt, R. C. The star formation law in galactic disks. Astrophys. J. 644, 685–703 (1989)

    Article  ADS  Google Scholar 

  18. Immeli, A., Samland, M., Gerhard, O. & Westera, P. Gas physics, disk fragmentation and bulge formation in young galaxies. Astron. Astrophys. 413, 547–561 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Kennicutt, R. C. The global Schmidt Law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)

    Article  ADS  Google Scholar 

  21. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    Article  ADS  Google Scholar 

  22. Tacconi, L. J. et al. High-resolution millimeter imaging of submillimeter galaxies. Astrophys. J. 640, 228–240 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Dib, S., Bell, E. & Burkert, A. The supernova rate-velocity dispersion relation in the interstellar medium. Astrophys. J. 638, 797–810 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Thompson, T. A., Quataert, E. & Murray, N. Radiation pressure-supported starburst disks and active galactic nucleus fueling. Astrophys. J. 630, 167–185 (2005)

    Article  ADS  Google Scholar 

  25. Monaco, P. Physical regimes for feedback in galaxy formation. Mon. Not. R. Astron. Soc. 352, 181–204 (2004)

    Article  ADS  Google Scholar 

  26. Lindblad, P.-O. NGC 1365. Astron. Astrophys. Rev. 9, 221–271 (1999)

    Article  ADS  Google Scholar 

  27. D'Onghia, E., Burkert, A., Murante, G. & Khochfar, S. How galaxies lose their angular momentum. Mon. Not. R. Astron. Soc. (submitted); preprint at (2006)

  28. Yoachim, P. & Dalcanton, J. J. Structural parameters of thin and thick disks in edge-on disk galaxies. Astron. J. 131, 226–249 (2006)

    Article  ADS  Google Scholar 

  29. Schreiber, J. et al. in Astronomical Data Analysis Software and Systems (ADASS) XIII (eds Ochsenbein, F., Allen, M. G. & Egret, D.) 380–383 (ASP Conf. Proc. 314, San Francisco, 2004)

    Google Scholar 

Download references


We thank the SINFONI team members, from the ESO and MPE, for their work, which made these observations possible; the Paranal staff, especially J. Navarrete and P. Amico for their support; and A. Burkert, O. Gerhard and P. Monaco for discussions. A.C. acknowledges support through a Bessel Prize of the Alexander von Humboldt Foundation. This study is based on observations at the Very Large Telescope (VLT) of the ESO, Paranal, Chile.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Genzel.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Discussion, Supplementary Figures 1–5 and additional references. (DOC 1291 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Genzel, R., Tacconi, L., Eisenhauer, F. et al. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature 442, 786–789 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing