Review Article | Published:

Multiferroic and magnetoelectric materials

Nature volume 442, pages 759765 (17 August 2006) | Download Citation

Subjects

Abstract

A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements. A ferromagnetic crystal exhibits a stable and switchable magnetization that arises through the quantum mechanical phenomenon of exchange. There are very few ‘multiferroic’ materials that exhibit both of these properties, but the ‘magnetoelectric’ coupling of magnetic and electrical properties is a more general and widespread phenomenon. Although work in this area can be traced back to pioneering research in the 1950s and 1960s, there has been a recent resurgence of interest driven by long-term technological aspirations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Piezoelectric and allied phenomena in Rochelle salt. Phys. Rev. 15, 537–538 (1920)

  2. 2.

    et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998)

  3. 3.

    et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

  4. 4.

    Phase transitions in BaMnF4. Rep. Prog. Phys. 42, 1055–1084 (1979)

  5. 5.

    & Ferroelectrically induced ferromagnetism. J. Phys. C 10, L329–L331 (1977)

  6. 6.

    Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

  7. 7.

    Multi-ferroic magnetoelectrics. Ferroelectrics 162, 665–685 (1994)

  8. 8.

    et al. Magnetoelectric properties of some rare earth molybdates. Ferroelectrics 161, 43–48 (1994)

  9. 9.

    Gajek, M. et al. Multiferroic tunnel junctions. Preprint at (2006).

  10. 10.

    On a magnetoelectric classification of materials. Int. J. Magn. 4, 337–361 (1973)

  11. 11.

    , , & Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966)

  12. 12.

    The Electrodynamics of Magneto-electric Media (North-Holland, Amsterdam, 1970)

  13. 13.

    Introduction to the proceedings of the 2nd international conference on magnetoelectric interaction phenomena in crystals, MEIPIC-2. Ferroelectrics 161, 1–28 (1994)

  14. 14.

    Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005)

  15. 15.

    On definition, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 165–180 (1994)

  16. 16.

    & Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

  17. 17.

    et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

  18. 18.

    , & Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168, 574–577 (1968)

  19. 19.

    & Nature of ferroelectricity in KNO3. Phys. Rev. 154, 493–505 (1967)

  20. 20.

    & Dielectric properties of strontium titanate at low temperatures. Phys. Rev. B 2, 677–684 (1970)

  21. 21.

    & Paramagnetoelectric effects in NiSO4·6H2O. Phys. Rev. 138, A1218–A1226 (1965)

  22. 22.

    Mechanisms of dielectric anomalies in BaMnF4. Phys. Rev. B 16, 2329–2331 (1977)

  23. 23.

    The piezomagnetoelectric effect. Acta Crystallogr. A 48, 266–271 (1992)

  24. 24.

    , , & Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40, 4948–4951 (2001)

  25. 25.

    , , & Magnetoelectric measurements on BaMnF4. Ferroelectrics 105, 201–206 (1990)

  26. 26.

    et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620–5623 (2000)

  27. 27.

    , & Physics of ferroelectric thin film oxides. Rev. Mod. Phys. 77, 1083–1130 (2005)

  28. 28.

    Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 (2006)

  29. 29.

    On the magneto-electrical effects in antiferromagnets. Zh. Eksp. Teor. Fiz. 37, 881–882 [Sov. Phys. JETP 10, 628–629] (1959)

  30. 30.

    The magnetoelectric effect in antiferromagnetics. Zh. Eksp. Teor. Fiz. 38, 984–985 [Sov. Phys. JETP 11, 708–709] (1960)

  31. 31.

    , & Anisotropy of the magnetoelectric effect in Cr2O3. Phys. Rev. Lett. 6, 607–608 (1961)

  32. 32.

    Short introduction to the proceedings of the 3rd International Conference on Magnetoelectric Interaction Phenomena in Crystals, MEIPIC-3. Ferroelectrics 204, XVII–XX (1997)

  33. 33.

    et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

  34. 34.

    , & Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005)

  35. 35.

    & Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974)

  36. 36.

    , , & Magnetoelectric phenomena in BaMnF4 and BaMn0.99Co0.01F4. Phys. Rev. B 21, 2926–2936 (1980)

  37. 37.

    , & Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073–1074 (1970)

  38. 38.

    , & Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982)

  39. 39.

    et al. Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys 24, 1051–1053 (1985)

  40. 40.

    , , & Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO3 in a strong magnetic field. Ferroelectrics 162, 135–140 (1994)

  41. 41.

    et al. Magnetoelectric (Bi,Ln)FeO3 compounds: crystal growth, structure and properties. Ferroelectrics 162, 11–21 (1994)

  42. 42.

    et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: Enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005)

  43. 43.

    et al. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

  44. 44.

    , & Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R = Ho, Er, Yb or Lu). J. Phys. Soc. Jpn 71, 1558–1564 (2002)

  45. 45.

    , , & Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3. Phys. Rev. B 70, 212412 (2004)

  46. 46.

    & Magnetoelectric behavior of domain walls in multiferroic HoMnO3. Phys. Rev. B 70, 220407(R) (2004)

  47. 47.

    Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946)

  48. 48.

    The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)

  49. 49.

    et al. On the problem of superdiamagnetism. Solid State Commun. 50, 339–343 (1984)

  50. 50.

    & Toroidal order in crystals. Ferroelectrics 161, 321–334 (1994)

  51. 51.

    On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 252, 253–268 (2001)

  52. 52.

    et al. Magnetic properties of nickel iodine boracite. JETP Lett. 20, 129–130 (1974)

  53. 53.

    , & Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004)

  54. 54.

    Ferroelectrics: Novel geometric ordering of ferroelectricity. Nature Mater. 4, 13–14 (2005)

  55. 55.

    , & New ferroelectrics of complex composition of the type A22 + (BI3 + BII5 + )O6. Sov. Phys. Solid State 1, 150–151 (1959)

  56. 56.

    , , & Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J. Phys. Soc. Jpn 25, 1553–1558 (1968)

  57. 57.

    , & Magnetic and electrical properties of Bi1-xSrxMnO3. J. Solid State Chem. 132, 139–143 (1997)

  58. 58.

    et al. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 122, 49–52 (2002)

  59. 59.

    et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, R180401 (2003)

  60. 60.

    , , & Growth of highly resistive BiMnO3 films. Appl. Phys. Lett. 87, 101906 (2005)

  61. 61.

    , & Insulating ferromagnetic spinels. Phys. Rev. Lett. 15, 493–495 (1965)

  62. 62.

    et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434, 364–367 (2005)

  63. 63.

    et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

  64. 64.

    et al. Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 419, 1203a (2005)

  65. 65.

    et al. Response to Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 419, 1203b (2005)

  66. 66.

    et al. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005)

  67. 67.

    , , & Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system. Phys. Rev. B 69, 212102 (2004)

  68. 68.

    & Observation of magnetoelectric behavior at room temperature in Pb(FexTi1-x)O3. Solid State Commun. 134, 783–786 (2005)

  69. 69.

    , & An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1710–1714 (1974)

  70. 70.

    et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831–3833 (2002)

  71. 71.

    , , & Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 84, 3516–3519 (2004)

  72. 72.

    et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 65, 134402 (2002)

  73. 73.

    et al. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547–3549 (2000)

  74. 74.

    et al. Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys. Rev. B 68, 132408 (2003)

  75. 75.

    Stress operated random access, high speed magnetic memory. J. Appl. Phys. 53, 2759–2761 (1982)

  76. 76.

    et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000)

  77. 77.

    Stress-driven magnetization reversal in magnetostrictive films with in-plane magnetocrystalline anisotropy. J. Magn. Magn. Mater. 240, 395–397 (2002)

  78. 78.

    et al. Voltage control of a magnetization easy axis in piezoelectric/ferromagnetic hybrid films. J. Magn. Magn. Mater. 267, 127–132 (2003)

  79. 79.

    et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004)

  80. 80.

    et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005)

  81. 81.

    , , & Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997)

  82. 82.

    et al. Electroresistance and electronic phase separation in mixed-valent manganites. Phys. Rev. Lett. 86, 5998–6001 (2001)

  83. 83.

    & Novel electronic properties of ferroelectric/ferromagnetic heterostructures. IEICI Tran. Electron. E80-C, 918–922 (1997)

  84. 84.

    Magnetophotonic crystals. Mater. Res. Soc. Symp. Proc. 834, J1.1.1–J1.1.19 (2005)

  85. 85.

    et al. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005)

  86. 86.

    Laukmin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Preprint at (2006).

  87. 87.

    et al. Preparation of all-oxide ferromagnetic/ferroelectric/superconducting heterostructures for advanced microwave applications. Supercond. Sci. Technol. 12, 836–839 (1999)

  88. 88.

    et al. A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite. Appl. Phys. Lett. 85, 3534–3536 (2004)

  89. 89.

    , & Ultrahigh magnetic field sensitivity in laminates of Terfenol-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Appl. Phys. Lett. 83, 2265–2267 (2003)

  90. 90.

    & Theory of polarization in crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)

  91. 91.

    Ferroelectricity (Princeton Univ. Press, Princeton, 1953)

  92. 92.

    & The infrared effective charge in IV–VI compounds: I. A simple one-dimensional model. J. Phys. C 12, 4431–4439 (1979)

  93. 93.

    , & Bond- versus site-ordering and possible ferroelectricity in manganites. Nature Mater. 3, 853–856 (2004)

  94. 94.

    & Linear and bilinear magnetoelectric effects in magnetically biased magnetite (Fe3O4). Phys. Rev. B 15, 290–297 (1977)

  95. 95.

    , , & Ferrimagnetic ferroelectricity of Fe3O4. J. Magn. Magn. Mater. 31–34, 783–784 (1983)

  96. 96.

    et al. Linear magnetoelectric effect in magnetic garnet thin films. Ferroelectrics 161, 65–71 (1994)

  97. 97.

    , , & Perovskite oxide tricolor superlattices with artificially broken inversion symmetry by interface effects. Appl. Phys. Lett. 81, 4793–4795 (2002)

  98. 98.

    et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005)

  99. 99.

    Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999)

  100. 100.

    et al. Spin filtering through ferromagnetic BiMnO3 tunnel barriers. Phys. Rev. B 72, 020406(R) (2005)

Download references

Acknowledgements

We thank P. B. Littlewood, M. Fiebig and A. D. Kent for discussions and S. Celotto for assistance with reproducing figures. This work was supported by an EU Marie Curie Fellowship (W.E.), The Royal Society (N.D.M.) and the UK EPSRC.

Author information

Affiliations

  1. Department of Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK

    • W. Eerenstein
    •  & N. D. Mathur
  2. Centre for Ferroics, Earth Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

    • J. F. Scott

Authors

  1. Search for W. Eerenstein in:

  2. Search for N. D. Mathur in:

  3. Search for J. F. Scott in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to N. D. Mathur.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nature05023

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.