Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiferroic and magnetoelectric materials

Abstract

A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements. A ferromagnetic crystal exhibits a stable and switchable magnetization that arises through the quantum mechanical phenomenon of exchange. There are very few ‘multiferroic’ materials that exhibit both of these properties, but the ‘magnetoelectric’ coupling of magnetic and electrical properties is a more general and widespread phenomenon. Although work in this area can be traced back to pioneering research in the 1950s and 1960s, there has been a recent resurgence of interest driven by long-term technological aspirations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The relationship between multiferroic and magnetoelectric materials.
Figure 2: Time-reversal and spatial-inversion symmetry in ferroics.
Figure 3: Strain-mediated magnetoelectric coupling in two-phase systems.
Figure 4: Examples of magnetoelectric coupling.
Figure 5: Link between the magnetic and electrical properties of BaMnF4.
Figure 6: Magnetoelectric coupling in two-phase systems.

References

  1. Valasek, J. Piezoelectric and allied phenomena in Rochelle salt. Phys. Rev. 15, 537–538 (1920)

    Google Scholar 

  2. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998)

    ADS  CAS  Google Scholar 

  3. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    ADS  CAS  PubMed  Google Scholar 

  4. Scott, J. F. Phase transitions in BaMnF4 . Rep. Prog. Phys. 42, 1055–1084 (1979)

    ADS  CAS  Google Scholar 

  5. Fox, D. L. & Scott, J. F. Ferroelectrically induced ferromagnetism. J. Phys. C 10, L329–L331 (1977)

    ADS  CAS  Google Scholar 

  6. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    CAS  Google Scholar 

  7. Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 665–685 (1994)

    CAS  Google Scholar 

  8. Ponomarev, B. K. et al. Magnetoelectric properties of some rare earth molybdates. Ferroelectrics 161, 43–48 (1994)

    CAS  Google Scholar 

  9. Gajek, M. et al. Multiferroic tunnel junctions. Preprint at http://arxiv.org/cond-mat/0606444 (2006).

  10. Schmid, H. On a magnetoelectric classification of materials. Int. J. Magn. 4, 337–361 (1973)

    CAS  Google Scholar 

  11. Ascher, E., Rieder, H., Schmid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966)

    ADS  CAS  Google Scholar 

  12. O'Dell, T. H. The Electrodynamics of Magneto-electric Media (North-Holland, Amsterdam, 1970)

    Google Scholar 

  13. Schmid, H. Introduction to the proceedings of the 2nd international conference on magnetoelectric interaction phenomena in crystals, MEIPIC-2. Ferroelectrics 161, 1–28 (1994)

    CAS  Google Scholar 

  14. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005)

    ADS  CAS  Google Scholar 

  15. Rivera, J.-P. On definition, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 165–180 (1994)

    CAS  Google Scholar 

  16. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  17. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    ADS  CAS  PubMed  Google Scholar 

  18. Brown, W. F. Jr, Hornreich, R. M. & Shtrikman, S. Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168, 574–577 (1968)

    ADS  Google Scholar 

  19. Chen, A. & Chernow, F. Nature of ferroelectricity in KNO3 . Phys. Rev. 154, 493–505 (1967)

    ADS  CAS  Google Scholar 

  20. Saifi, M. A. & Cross, L. E. Dielectric properties of strontium titanate at low temperatures. Phys. Rev. B 2, 677–684 (1970)

    ADS  Google Scholar 

  21. Hou, S. L. & Bloembergen, N. Paramagnetoelectric effects in NiSO4·6H2O. Phys. Rev. 138, A1218–A1226 (1965)

    ADS  Google Scholar 

  22. Scott, J. F. Mechanisms of dielectric anomalies in BaMnF4 . Phys. Rev. B 16, 2329–2331 (1977)

    ADS  CAS  Google Scholar 

  23. Grimmer, H. The piezomagnetoelectric effect. Acta Crystallogr. A 48, 266–271 (1992)

    Google Scholar 

  24. Ryu, J., Vásquez Carazo, A., Uchino, K. & Kim, H.-E. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40, 4948–4951 (2001)

    ADS  CAS  Google Scholar 

  25. Sciau, Ph., Clin, M., Rivera, J.-P. & Schmid, H. Magnetoelectric measurements on BaMnF4 . Ferroelectrics 105, 201–206 (1990)

    CAS  Google Scholar 

  26. Fiebig, M. et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620–5623 (2000)

    ADS  CAS  PubMed  Google Scholar 

  27. Dawber, M., Rabe, K. & Scott, J. F. Physics of ferroelectric thin film oxides. Rev. Mod. Phys. 77, 1083–1130 (2005)

    ADS  CAS  Google Scholar 

  28. Catalan, G. Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 (2006)

    ADS  Google Scholar 

  29. Dzyaloshinskii, I. E. On the magneto-electrical effects in antiferromagnets. Zh. Eksp. Teor. Fiz. 37, 881–882 [Sov. Phys. JETP 10, 628–629] (1959)

    CAS  Google Scholar 

  30. Astrov, D. N. The magnetoelectric effect in antiferromagnetics. Zh. Eksp. Teor. Fiz. 38, 984–985 [Sov. Phys. JETP 11, 708–709] (1960)

    CAS  Google Scholar 

  31. Folen, V. J., Rado, G. T. & Stalder, E. W. Anisotropy of the magnetoelectric effect in Cr2O3 . Phys. Rev. Lett. 6, 607–608 (1961)

    ADS  CAS  Google Scholar 

  32. Bichurin, M. Short introduction to the proceedings of the 3rd International Conference on Magnetoelectric Interaction Phenomena in Crystals, MEIPIC-3. Ferroelectrics 204, XVII–XX (1997)

    Google Scholar 

  33. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    ADS  CAS  PubMed  Google Scholar 

  34. Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005)

    ADS  CAS  PubMed  Google Scholar 

  35. de Jongh, L. J. & Miedema, A. R. Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974)

    ADS  CAS  Google Scholar 

  36. Fox, D. L., Tilley, D. R., Scott, J. F. & Guggenheim, H. J. Magnetoelectric phenomena in BaMnF4 and BaMn0.99Co0.01F4 . Phys. Rev. B 21, 2926–2936 (1980)

    ADS  CAS  Google Scholar 

  37. Teage, J. R., Gerson, R. & James, W. J. Dielectric hysteresis in single crystal BiFeO3 . Solid State Commun. 8, 1073–1074 (1970)

    ADS  Google Scholar 

  38. Sosnovska, I., Peterlin-Neumaier, T. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15, 4835–4846 (1982)

    ADS  Google Scholar 

  39. Tabarez-Muñoz, C. et al. Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3 . Jpn. J. Appl. Phys 24, 1051–1053 (1985)

    Google Scholar 

  40. Popov, Y. F., Kadomtseva, A. M., Vorob'ev, G. P. & Zvezdin, A. K. Discovery of the linear magnetoelectric effect in magnetic ferroelectric BiFeO3 in a strong magnetic field. Ferroelectrics 162, 135–140 (1994)

    Google Scholar 

  41. Murashov, V. A. et al. Magnetoelectric (Bi,Ln)FeO3 compounds: crystal growth, structure and properties. Ferroelectrics 162, 11–21 (1994)

    Google Scholar 

  42. Bai, F. et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: Enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005)

    ADS  Google Scholar 

  43. Fiebig, M. et al. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    ADS  CAS  PubMed  Google Scholar 

  44. Sugie, H., Iwata, N. & Kohn, K. Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R = Ho, Er, Yb or Lu). J. Phys. Soc. Jpn 71, 1558–1564 (2002)

    ADS  CAS  Google Scholar 

  45. Lorenz, B., Wang, Y. Q., Sun, Y. Y. & Chu, C. W. Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3 . Phys. Rev. B 70, 212412 (2004)

    ADS  Google Scholar 

  46. Lottermoser, T. & Fiebig, M. Magnetoelectric behavior of domain walls in multiferroic HoMnO3 . Phys. Rev. B 70, 220407(R) (2004)

    ADS  Google Scholar 

  47. Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946)

    ADS  CAS  Google Scholar 

  48. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)

    ADS  MathSciNet  CAS  Google Scholar 

  49. Ginzburg, V. L. et al. On the problem of superdiamagnetism. Solid State Commun. 50, 339–343 (1984)

    ADS  CAS  Google Scholar 

  50. Gorbatsevich, A. A. & Kopaev, Y. V. Toroidal order in crystals. Ferroelectrics 161, 321–334 (1994)

    CAS  Google Scholar 

  51. Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 252, 253–268 (2001)

    Google Scholar 

  52. Zheludev, I. S. et al. Magnetic properties of nickel iodine boracite. JETP Lett. 20, 129–130 (1974)

    ADS  Google Scholar 

  53. Naumov, I. V., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004)

    ADS  CAS  PubMed  Google Scholar 

  54. Scott, J. F. Ferroelectrics: Novel geometric ordering of ferroelectricity. Nature Mater. 4, 13–14 (2005)

    ADS  CAS  Google Scholar 

  55. Smolensky, G. A., Isupov, V. A. & Agronovskaya, A. I. New ferroelectrics of complex composition of the type A22 +(BI3 +BII5 +)O6 . Sov. Phys. Solid State 1, 150–151 (1959)

    Google Scholar 

  56. Sugawara, F., Iiida, S., Syono, Y. & Akimoto, S. Magnetic properties and crystal distortions of BiMnO3 and BiCrO3 . J. Phys. Soc. Jpn 25, 1553–1558 (1968)

    ADS  CAS  Google Scholar 

  57. Chiba, H., Atou, T. & Syono, Y. Magnetic and electrical properties of Bi1-xSrxMnO3 . J. Solid State Chem. 132, 139–143 (1997)

    ADS  CAS  Google Scholar 

  58. Moreira dos Santos, A. et al. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3 . Solid State Commun. 122, 49–52 (2002)

    ADS  CAS  Google Scholar 

  59. Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3 . Phys. Rev. B 67, R180401 (2003)

    ADS  Google Scholar 

  60. Eerenstein, W., Morrison, F. D., Scott, J. F. & Mathur, N. D. Growth of highly resistive BiMnO3 films. Appl. Phys. Lett. 87, 101906 (2005)

    ADS  Google Scholar 

  61. Baltzer, P. K., Lehmann, H. W. & Robbins, M. Insulating ferromagnetic spinels. Phys. Rev. Lett. 15, 493–495 (1965)

    ADS  CAS  Google Scholar 

  62. Hemberger, J. et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4 . Nature 434, 364–367 (2005)

    ADS  CAS  PubMed  Google Scholar 

  63. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    ADS  CAS  PubMed  Google Scholar 

  64. Eerenstein, W. et al. Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 419, 1203a (2005)

    Google Scholar 

  65. Wang, J. et al. Response to Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 419, 1203b (2005)

    Google Scholar 

  66. Béa, H. et al. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005)

    ADS  Google Scholar 

  67. Palkar, V. R., Kundaliya, D. C., Malik, S. K. & Bhattacharya, S. Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system. Phys. Rev. B 69, 212102 (2004)

    ADS  Google Scholar 

  68. Palkar, V. R. & Malik, S. K. Observation of magnetoelectric behavior at room temperature in Pb(FexTi1-x)O3 . Solid State Commun. 134, 783–786 (2005)

    ADS  CAS  Google Scholar 

  69. van Run, A. M. J. G., Terrell, D. R. & Scholing, J. H. An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1710–1714 (1974)

    ADS  CAS  Google Scholar 

  70. Nan, C.-W. et al. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831–3833 (2002)

    ADS  CAS  Google Scholar 

  71. Cai, N., Nan, C.-W., Zhai, J. & Lin, Y. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 84, 3516–3519 (2004)

    ADS  CAS  Google Scholar 

  72. Srinivasan, G. et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 65, 134402 (2002)

    ADS  Google Scholar 

  73. Lee, M. K. et al. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547–3549 (2000)

    ADS  CAS  Google Scholar 

  74. Bichurin, M. I. et al. Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys. Rev. B 68, 132408 (2003)

    ADS  Google Scholar 

  75. Schröder, K. Stress operated random access, high speed magnetic memory. J. Appl. Phys. 53, 2759–2761 (1982)

    ADS  Google Scholar 

  76. Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000)

    ADS  CAS  Google Scholar 

  77. Iwasaki, Y. Stress-driven magnetization reversal in magnetostrictive films with in-plane magnetocrystalline anisotropy. J. Magn. Magn. Mater. 240, 395–397 (2002)

    ADS  CAS  Google Scholar 

  78. Kim, S.-K. et al. Voltage control of a magnetization easy axis in piezoelectric/ferromagnetic hybrid films. J. Magn. Magn. Mater. 267, 127–132 (2003)

    ADS  CAS  Google Scholar 

  79. Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004)

    ADS  CAS  PubMed  Google Scholar 

  80. Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005)

    ADS  CAS  PubMed  Google Scholar 

  81. Mathews, S., Ramesh, R., Venkatesan, T. & Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997)

    CAS  PubMed  Google Scholar 

  82. Wu, T. et al. Electroresistance and electronic phase separation in mixed-valent manganites. Phys. Rev. Lett. 86, 5998–6001 (2001)

    ADS  CAS  PubMed  Google Scholar 

  83. Tabata, H. & Kawai, T. Novel electronic properties of ferroelectric/ferromagnetic heterostructures. IEICI Tran. Electron. E80-C, 918–922 (1997)

    Google Scholar 

  84. Inoue, M. Magnetophotonic crystals. Mater. Res. Soc. Symp. Proc. 834, J1.1.1–J1.1.19 (2005)

    Google Scholar 

  85. Borisov, P. et al. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005)

    ADS  PubMed  Google Scholar 

  86. Laukmin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Preprint at http://arxiv.org/cond-mat/0607381 (2006).

  87. Hontsu, S. et al. Preparation of all-oxide ferromagnetic/ferroelectric/superconducting heterostructures for advanced microwave applications. Supercond. Sci. Technol. 12, 836–839 (1999)

    ADS  CAS  Google Scholar 

  88. Dong, S. et al. A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite. Appl. Phys. Lett. 85, 3534–3536 (2004)

    ADS  CAS  Google Scholar 

  89. Dong, S., Li, J. F. & Viehland, D. Ultrahigh magnetic field sensitivity in laminates of Terfenol-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Appl. Phys. Lett. 83, 2265–2267 (2003)

    ADS  CAS  Google Scholar 

  90. Kingsmith, R. D. & Vanderbilt, D. Theory of polarization in crystalline solids. Phys. Rev. B 47, 1651–1654 (1993)

    ADS  CAS  Google Scholar 

  91. Jaynes, E. T. Ferroelectricity (Princeton Univ. Press, Princeton, 1953)

    MATH  Google Scholar 

  92. Littlewood, P. B. & Heine, V. The infrared effective charge in IV–VI compounds: I. A simple one-dimensional model. J. Phys. C 12, 4431–4439 (1979)

    ADS  CAS  Google Scholar 

  93. Efremov, D. V., Van den Brink, J. & Khomskii, D. I. Bond- versus site-ordering and possible ferroelectricity in manganites. Nature Mater. 3, 853–856 (2004)

    ADS  CAS  Google Scholar 

  94. Rado, G. T. & Ferrari, J. M. Linear and bilinear magnetoelectric effects in magnetically biased magnetite (Fe3O4). Phys. Rev. B 15, 290–297 (1977)

    ADS  CAS  Google Scholar 

  95. Kato, K., Iida, S., Yanai, K. & Mizushima, K. Ferrimagnetic ferroelectricity of Fe3O4 . J. Magn. Magn. Mater. 31–34, 783–784 (1983)

    ADS  Google Scholar 

  96. Krichevtsov, B. B. et al. Linear magnetoelectric effect in magnetic garnet thin films. Ferroelectrics 161, 65–71 (1994)

    CAS  Google Scholar 

  97. Yamada, Y., Kawasaki, M., Ogawa, Y. & Tokura, Y. Perovskite oxide tricolor superlattices with artificially broken inversion symmetry by interface effects. Appl. Phys. Lett. 81, 4793–4795 (2002)

    ADS  CAS  Google Scholar 

  98. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005)

    ADS  CAS  PubMed  Google Scholar 

  99. Sun, J. Z. Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999)

    ADS  CAS  Google Scholar 

  100. Gajek, M. et al. Spin filtering through ferromagnetic BiMnO3 tunnel barriers. Phys. Rev. B 72, 020406(R) (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank P. B. Littlewood, M. Fiebig and A. D. Kent for discussions and S. Celotto for assistance with reproducing figures. This work was supported by an EU Marie Curie Fellowship (W.E.), The Royal Society (N.D.M.) and the UK EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Mathur.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eerenstein, W., Mathur, N. & Scott, J. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05023

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing