Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Signal sequence directs localized secretion of bacterial surface proteins


All living cells require specific mechanisms that target proteins to the cell surface. In eukaryotes, the first part of this process involves recognition in the endoplasmic reticulum of amino-terminal signal sequences and translocation through Sec translocons, whereas subsequent targeting to different surface locations is promoted by internal sorting signals1. In bacteria, N-terminal signal sequences promote translocation across the cytoplasmic membrane, which surrounds the entire cell, but some proteins are nevertheless secreted in one part of the cell by poorly understood mechanisms2,3. Here we analyse localized secretion in the Gram-positive pathogen Streptococcus pyogenes, and show that the signal sequences of two surface proteins, M protein and protein F (PrtF), direct secretion to different subcellular regions. The signal sequence of M protein promotes secretion at the division septum, whereas that of PrtF preferentially promotes secretion at the old pole. Our work therefore shows that a signal sequence may contain information that directs the secretion of a protein to one subcellular region, in addition to its classical role in promoting secretion. This finding identifies a new level of complexity in protein translocation and emphasizes the potential of bacterial systems for the analysis of fundamental cell-biological problems4.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Surface distribution and secretion pattern for M6 and PrtF in S. pyogenes.
Figure 2: Domain swaps derived from M6 and PrtF are expressed on the streptococcal surface.
Figure 3: Signal sequences direct secretion to different subcellular regions.
Figure 4: Distribution of SecA in S. pyogenes.


  1. Muth, T. R. & Caplan, M. J. Transport protein trafficking in polarized cells. Annu. Rev. Cell Dev. Biol. 19, 333–366 (2003)

    CAS  Article  Google Scholar 

  2. Rosch, J. & Caparon, M. A microdomain for protein secretion in Gram-positive bacteria. Science 304, 1513–1515 (2004)

    ADS  CAS  Article  Google Scholar 

  3. Janakiraman, A. & Goldberg, M. B. Recent advances on the development of bacterial poles. Trends Microbiol. 12, 518–525 (2004)

    CAS  Article  Google Scholar 

  4. Gitai, Z. The new bacterial cell biology: moving parts and subcellular architecture. Cell 120, 577–586 (2005)

    CAS  Article  Google Scholar 

  5. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005)

    Article  Google Scholar 

  6. Navarre, W. W. & Schneewind, O. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174–229 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlsson, F., Berggård, K., Stålhammar-Carlemalm, M. & Lindahl, G. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J. Exp. Med. 198, 1057–1068 (2003)

    CAS  Article  Google Scholar 

  8. Carlsson, F., Sandin, C. & Lindahl, G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol. Microbiol. 56, 28–39 (2005)

    CAS  Article  Google Scholar 

  9. Cole, R. M. & Hahn, J. J. Cell wall replication in Streptococcus pyogenes. Science 135, 722–724 (1962)

    ADS  CAS  Article  Google Scholar 

  10. Swanson, J., Hsu, K. C. & Gotschlich, E. C. Electron microscopic studies on streptococci. I. M antigen. J. Exp. Med. 130, 1063–1091 (1969)

    CAS  Article  Google Scholar 

  11. Rosch, J. W. & Caparon, M. G. The ExPortal: an organelle dedicated to the biogenesis of secreted proteins in Streptococcus pyogenes. Mol. Microbiol. 58, 959–968 (2005)

    CAS  Article  Google Scholar 

  12. Ozeri, V. et al. De novo formation of focal complex-like structures in host cells by invading Streptococci. Mol. Microbiol. 41, 561–573 (2001)

    CAS  Article  Google Scholar 

  13. Haanes-Fritz, E. et al. Comparison of the leader sequences of four group A streptococcal M protein genes. Nucleic Acids Res. 16, 4667–4677 (1988)

    CAS  Article  Google Scholar 

  14. O'Toole, P., Stenberg, L., Rissler, M. & Lindahl, G. Two major classes in the M protein family in group A streptococci. Proc. Natl Acad. Sci. USA 89, 8661–8665 (1992)

    ADS  CAS  Article  Google Scholar 

  15. Schneewind, O., Fowler, A. & Faull, K. F. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268, 103–106 (1995)

    ADS  CAS  Article  Google Scholar 

  16. Mazmanian, S. K., Liu, G., Ton-That, H. & Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285, 760–763 (1999)

    CAS  Article  Google Scholar 

  17. Barnett, T. C. & Scott, J. R. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J. Bacteriol. 184, 2181–2191 (2002)

    CAS  Article  Google Scholar 

  18. Hollingshead, S. K., Fischetti, V. A. & Scott, J. R. Complete nucleotide sequence of type 6 M protein of the group A Streptococcus. Repetitive structure and membrane anchor. J. Biol. Chem. 261, 1677–1686 (1986)

    CAS  PubMed  Google Scholar 

  19. Sela, S. et al. Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol. Microbiol. 10, 1049–1055 (1993)

    CAS  Article  Google Scholar 

  20. van Wely, K. H., Swaving, J., Freudl, R. & Driessen, A. J. Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol. Rev. 25, 437–454 (2001)

    CAS  Article  Google Scholar 

  21. Rudner, D. Z., Pan, Q. & Losick, R. M. Evidence that subcellular localization of a bacterial membrane protein is achieved by diffusion and capture. Proc. Natl Acad. Sci. USA 99, 8701–8706 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Rosenstein, R. & Götz, F. Staphylococcal lipases: biochemical and molecular characterization. Biochimie 82, 1005–1014 (2000)

    CAS  Article  Google Scholar 

  23. Bae, T. & Schneewind, O. The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J. Bacteriol. 185, 2910–2919 (2003)

    CAS  Article  Google Scholar 

  24. Campo, N. et al. Subcellular sites for bacterial protein export. Mol. Microbiol. 53, 1583–1599 (2004)

    CAS  Article  Google Scholar 

  25. Rafelski, S. M. & Theriot, J. A. Mechanism of polarization of Listeria monocytogenes surface protein ActA. Mol. Microbiol. 59, 1262–1279 (2006)

    CAS  Article  Google Scholar 

  26. Palmer, T., Sargent, F. & Berks, B. C. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13, 175–180 (2005)

    CAS  Article  Google Scholar 

  27. Dilks, K., Rose, R. W., Hartmann, E. & Pohlschroder, M. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J. Bacteriol. 185, 1478–1483 (2003)

    CAS  Article  Google Scholar 

  28. Brandon, L. D. et al. IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol. Microbiol. 50, 45–60 (2003)

    CAS  Article  Google Scholar 

Download references


We thank A. Frigyesi for statistical analysis, L. Gefors for technical assistance, R. Freudl for anti-SecA antiserum, and E. Hanski, K. Pogliano and J. Scott for bacterial strains. This work was financed by the Swedish Research Council, Lund University Hospital, The Royal Physiographic Society in Lund, and the Trusts of Golje, Kock, Lundström and Österlund.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gunnar Lindahl.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–4. (PDF 255 kb)

Supplementary Methods

This file contains additional details of the Methods used in this study. (DOC 72 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carlsson, F., Stålhammar-Carlemalm, M., Flärdh, K. et al. Signal sequence directs localized secretion of bacterial surface proteins. Nature 442, 943–946 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing