Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA overwinds when stretched

Abstract

DNA is often modelled as an isotropic rod1,2,3,4, but its chiral structure suggests the possible importance of anisotropic mechanical properties, including coupling between twisting and stretching degrees of freedom. Simple physical intuition predicts that DNA should unwind under tension, as it is pulled towards a denatured structure4,5,6,7,8. We used rotor bead tracking to directly measure twist–stretch coupling in single DNA molecules. Here we show that for small distortions, contrary to intuition, DNA overwinds under tension, reaching a maximum twist at a tension of 30 pN. As tension is increased above this critical value, the DNA begins to unwind. The observed twist–stretch coupling predicts that DNA should also lengthen when overwound under constant tension, an effect that we quantitatively confirm. We present a simple model that explains these unusual mechanical properties, and also suggests a possible origin for the anomalously large torsional rigidity of DNA. Our results have implications for the action of DNA-binding proteins that must stretch and twist DNA to compensate for variability in the lengths of their binding sites9,10,11. The requisite coupled DNA distortions are favoured by the intrinsic mechanical properties of the double helix reported here.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA overwinds when stretched.
Figure 2: DNA extends when overwound under constant tension.
Figure 3: Toy mechanical model of DNA.

Similar content being viewed by others

References

  1. Hagerman, P. J. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988)

    Article  CAS  Google Scholar 

  2. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992)

    Article  ADS  CAS  Google Scholar 

  3. Bustamante, C., Smith, S. B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000)

    Article  CAS  Google Scholar 

  4. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Marko, J. F. Stretching must twist DNA. Europhys. Lett. 38, 183–188 (1997)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Kamian, R., Lubensky, T., Nelson, P. & O'Hern, C. Direct determination of DNA twist-stretch coupling. Europhys. Lett. 38, 237–242 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. Moroz, J. D. & Nelson, P. Entropic elasticity of twist-storing polymers. Macromolecules 31, 6333–6347 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Olson, W. K., Gorin, A. A., Lu, X. J., Hock, L. M. & Zhurkin, V. B. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl Acad. Sci. USA 95, 11163–11168 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Kosikov, K. M., Gorin, A. A., Zhurkin, V. B. & Olson, W. K. DNA stretching and compression: large-scale simulations of double helical structures. J. Mol. Biol. 289, 1301–1326 (1999)

    Article  CAS  Google Scholar 

  11. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Travers, A. A. & Thompson, J. M. T. An introduction to the mechanics of DNA. Phil. Trans. R. Soc. Lond. A 362, 1265–1279 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Gore, J. Single-Molecule Studies of DNA Twist Mechanics and Gyrase Mechanochemistry. Thesis, Univ. California, Berkeley, (2005).

  16. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)

    Article  ADS  CAS  Google Scholar 

  17. Nelson, P. Biological Physics (Freeman, New York, 2003)

    Google Scholar 

  18. Depew, D. E. & Wang, J. C. Conformational fluctuations of DNA helix. Proc. Natl Acad. Sci. USA 72, 4275–4279 (1975)

    Article  ADS  CAS  Google Scholar 

  19. Lankas, F., Sponer, J., Langowski, J. & Cheatham, T. E. DNA basepair step deformability inferred from molecular dynamics simulations. Biophys. J. 85, 2872–2883 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Wahl, M. C. & Sundaralingam, M. Crystal structures of A-DNA duplexes. Biopolymers 44, 45–63 (1997)

    Article  CAS  Google Scholar 

  21. Gore, J. et al. Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature 439, 100–104 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Strick, T. R., Allemand, J. F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Feynman, R. Feynman Lectures on Physics (Addison Wesley Longman, Reading, Massachusetts, 1970)

    Google Scholar 

  24. Hogan, M. E. & Austin, R. H. Importance of DNA stiffness in protein-DNA binding specificity. Nature 329, 263–266 (1987)

    Article  ADS  CAS  Google Scholar 

  25. Hegner, M., Smith, S. B. & Bustamante, C. Polymerization and mechanical properties of single RecA-DNA filaments. Proc. Natl Acad. Sci. USA 96, 10109–10114 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, Massachusetts, 2001)

    Google Scholar 

  27. Baumann, C. G., Smith, S. B., Bloomfield, V. A. & Bustamante, C. Ionic effects on the elasticity of single DNA molecules. Proc. Natl Acad. Sci. USA 94, 6185–6190 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Lionnet, T., Joubaud, S., Lavery, R., Bensimon, D. & Croquette, V. Wringing out DNA. Phys. Rev. Lett. 96, 178102 (2006)

    Article  ADS  Google Scholar 

  29. Gosse, C. & Croquette, V. Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002)

    Article  CAS  Google Scholar 

  30. Davenport, R. J., Wuite, G. J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this work to our friend and colleague N.R. Cozzarelli, who passed away during completion of this research. We thank S. Hong, D. Humphries and M. D. Stone for help with the experiments described in Fig. 2, and S. Smith and A. Spakowitz for discussions. This work was supported by an NIH grant to C.B., the Fannie and John Hertz Foundation (J.G.), and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bustamante.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a description of the mechanical properties of the toy DNA model, and four references. (DOC 59 kb)

Supplementary Figure

Toy mechanical model of DNA. (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gore, J., Bryant, Z., Nöllmann, M. et al. DNA overwinds when stretched. Nature 442, 836–839 (2006). https://doi.org/10.1038/nature04974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04974

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing