Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interplay of electron–lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ

Abstract

Formation of electron pairs is essential to superconductivity. For conventional superconductors, tunnelling spectroscopy has established that pairing is mediated by bosonic modes (phonons); a peak in the second derivative of tunnel current d2I/dV2 corresponds to each phonon mode1,2,3. For high-transition-temperature (high-Tc) superconductivity, however, no boson mediating electron pairing has been identified. One explanation could be that electron pair formation4 and related electron–boson interactions are heterogeneous at the atomic scale and therefore challenging to characterize. However, with the latest advances in d2I/dV2 spectroscopy using scanning tunnelling microscopy, it has become possible to study bosonic modes directly at the atomic scale5. Here we report d2I/dV2 imaging6,7,8 studies of the high-Tc superconductor Bi2Sr2CaCu2O8+δ. We find intense disorder of electron–boson interaction energies at the nanometre scale, along with the expected modulations in d2I/dV2 (refs 9, 10). Changing the density of holes has minimal effects on both the average mode energies and the modulations, indicating that the bosonic modes are unrelated to electronic or magnetic structure. Instead, the modes appear to be local lattice vibrations, as substitution of 18O for 16O throughout the material reduces the average mode energy by approximately 6 per cent—the expected effect of this isotope substitution on lattice vibration frequencies5. Significantly, the mode energies are always spatially anticorrelated with the superconducting pairing-gap energies, suggesting an interplay between these lattice vibration modes and the superconductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Atomic-resolution d2I /d V2(r, E ) imaging of electron–boson interactions in Bi2Sr2CaCu2O8+ δ.
Figure 3: Doping dependence of electron–boson interactions of Bi2Sr2CaCu2O8+ δ.
Figure 2: Ubiquitous quasi-periodic spatial modulations in d 2 I /d V 2 (r, ω ) signals, after gap referencing.
Figure 4: Doping dependence of energy gap histograms and boson energy histograms in Bi2Sr2CaCu2O8+ δ.
Figure 5: 18 O/ 16 O isotope effects on d 2 I /d V 2 (r, ω ) spectra and the distribution of boson energies.

References

  1. 1

    McMillan, W. L. & Rowell, J. M. in Superconductivity Vol. 1 (ed. Parks, R. D.) 561 (Dekker, New York, 1969)

    Google Scholar 

  2. 2

    Scalapino, D. J. in Superconductivity Vol. 1 (ed. Parks, R. D.) 449 (Dekker, New York, 1969)

    Google Scholar 

  3. 3

    Carbotte, J. P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Nunner, T. S., Andersen, B. M., Melikyan, A. & Hirschfeld, P. J. Dopant-modulated pair interaction in cuprate superconductors. Phys. Rev. Lett. 95, 177003 (2005)

    ADS  Article  Google Scholar 

  5. 5

    Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Morr, D. K. & Nyberg, R. H. Localized bosonic modes in superconductors. Phys. Rev. B 68, 060505 (2003)

    ADS  Article  Google Scholar 

  7. 7

    Han, J. H. Signature of a collective spin mode in the local tunnelling spectra of a d-wave superconductor. Phys. Rev. B 67, 094506 (2003)

    ADS  Article  Google Scholar 

  8. 8

    Balatsky, A. V., Abanov, Ar. & Zhu, J.-X. Inelastic tunnelling spectroscopy in a d-wave superconductor. Phys. Rev. B 68, 214506 (2003)

    ADS  Article  Google Scholar 

  9. 9

    Zhu, J.-X., Sun, J., Si, Q. & Balatsky, A. V. Effects of a collective spin resonance mode on the scanning tunnelling microscopy spectra of d-wave superconductors. Phys. Rev. Lett. 92, 017002 (2004)

    ADS  Article  Google Scholar 

  10. 10

    Zhu, J.-X. et al. Effects of τ1 scattering on Fourier-transformed inelastic tunnelling spectra in high-Tc cuprates with bosonic modes. Preprint at http://www.arXiv.org/cond-mat/0507621 (2005).

  11. 11

    Eliashberg, G. M. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11, 696–702 (1960)

    MathSciNet  MATH  Google Scholar 

  12. 12

    McQueeney, R. J. et al. Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 at low temperatures. Phys. Rev. Lett. 82, 628–631 (1999)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Reznik, D. et al. Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Egami, T. Competing interactions in complex oxides: Polaron stability in manganites and cuprates. AIP Conf. Proc. 554, 38–47 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Sidis, Y. et al. Magnetic resonant excitations in high-Tc superconductors. Phys. Status Solidi B 241, 1204–1210 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doğan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Bogdanov, P. V. et al. Evidence for an energy scale for quasiparticle dispersion in Bi2Sr2CaCu2O8 . Phys. Rev. Lett. 85, 2581–2584 (2000)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kaminski, A. et al. Renormalization of spectral line shape and dispersion below Tc in Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 86, 1070–1073 (2001)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Johnson, P. D. et al. Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 87, 177007 (2001)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Norman, M. R. et al. Unusual dispersion and line shape of the superconducting state spectra of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 79, 3506–3509 (1997)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Borisenko, S. V. et al. Anomalous enhancement of the coupling to the magnetic resonance mode in underdoped Pb-Bi2212. Phys. Rev. Lett. 90, 207001 (2003)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Gromko, A. D. et al. Mass-renormalized electronic excitations at (π,0) in the superconducting state of Bi2Sr2CaCu2O8+δ . Phys. Rev. B 68, 174520 (2003)

    ADS  Article  Google Scholar 

  25. 25

    Cuk, T. et al. Coupling of the B1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ . Phys. Rev. Lett. 93, 117003 (2004)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Gweon, G.-H. et al. An unusual isotope effect in a high-transition-temperature superconductor. Nature 430, 187–190 (2004)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Miyakawa, N. et al. Predominantly superconducting origin of large energy gaps in underdoped Bi2Sr2CaCu2O8+δ from tunnelling spectroscopy. Phys. Rev. Lett. 83, 1018–1021 (1999)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Romano, P. et al. Modelling study of the dip/hump feature in Bi2Sr2CaCu2O8+δ tunnelling spectroscopy. Preprint at http://www.arXiv.org/cond-mat/0602405 (2006).

  29. 29

    Carbotte, J. P., Schachinger, E. & Basov, D. N. Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401, 354–356 (1999)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Hwang, J., Timusk, T. & Gu, G. D. High-transition-temperature superconductivity in the absence of the magnetic-resonance mode. Nature 427, 714–717 (2004)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Zhu, J.-X. & Balatsky, A. V. Local strong coupling pairing in d-wave superconductor with inhomogeneous bosonic modes. Preprint at http://www.arXiv.org/cond-mat/0604391 (2006).

  32. 32

    Pilgram, S., Rice, T. M. & Sigrist, M. Role of inelastic tunneling through the barrier in scanning tunneling microscope experiments on cuprates. Preprint at http://www.arXiv.org/cond-mat/0605646 (2006).

Download references

Acknowledgements

We thank the following people for discussions and communications: Ar. Abanov, P. W. Anderson, N. Ashcroft, T. P. Devereaux, T. Egami, M. Eshrig, C. Henley, P. J. Hirschfeld, A. Lanzara, D.-H. Lee, P. Littlewood, D. Morr, K. A. Müller, M. R. Norman, J. Orenstein, T. M. Rice, J. Rowell, D. J. Scalapino, Z.-X. Shen, C. M. Varma and A. Zettl. This work was supported by an LDRD from Los Alamos National Laboratory, a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan), the 21st-Century COE Program of JSPS, by Cornell University and by the Office of Naval Research; K.F. acknowledges Fellowship support from the ICAM International Materials Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. C. Davis.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–3 (PDF 262 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Fujita, K., McElroy, K. et al. Interplay of electron–lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ. Nature 442, 546–550 (2006). https://doi.org/10.1038/nature04973

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing