Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nuclear reprogramming and pluripotency

Abstract

The cloning of mammals from differentiated donor cells has refuted the old dogma that development is an irreversible process. It has demonstrated that the oocyte can reprogramme an adult nucleus into an embryonic state that can direct development of a new organism. The prospect of deriving patient-specific embryonic stem cells by nuclear transfer underscores the potential use of this technology in regenerative medicine. The future challenge will be to study alternatives to nuclear transfer in order to recapitulate reprogramming in a Petri dish without the use of oocytes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Different approaches for studying nuclear reprogramming.
Figure 2: Differentiation and cloning efficiency.
Figure 3: Culture-induced reprogramming.

References

  1. Gurdon, J. B. & Byrne, J. A. The first half-century of nuclear transplantation. Proc. Natl Acad. Sci. USA 100, 8048–8052 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998).

    ADS  CAS  PubMed  Google Scholar 

  3. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    ADS  CAS  PubMed  Google Scholar 

  6. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    ADS  CAS  PubMed  Google Scholar 

  7. Li, L., Connelly, M. C., Wetmore, C., Curran, T. & Morgan, J. I. Mouse embryos cloned from brain tumors. Cancer Res. 63, 2733–2736 (2003).

    CAS  PubMed  Google Scholar 

  8. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    ADS  CAS  PubMed  Google Scholar 

  9. Rideout, W. M., Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27 (2002).

    CAS  PubMed  Google Scholar 

  10. Tamashiro, K. L. et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nature Med. 8, 262–267 (2002).

    CAS  PubMed  Google Scholar 

  11. Ogonuki, N. et al. Early death of mice cloned from somatic cells. Nature Genet. 30, 253–254 (2002).

    CAS  PubMed  Google Scholar 

  12. Briggs, R. & King, T. J. Changes in the nuclei of differentiating endoderm cells as revealed by nuclear transplantation. J. Morphol. 100, 269–311 (1957).

    Google Scholar 

  13. Cheong, H. T., Takahashi, Y. & Kanagawa, H. Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol. Reprod. 48, 958–963 (1993).

    CAS  PubMed  Google Scholar 

  14. Hiiragi, T. & Solter, D. Reprogramming is essential in nuclear transfer. Mol. Reprod. Dev. 70, 417–421 (2005).

    CAS  PubMed  Google Scholar 

  15. Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl Acad. Sci. USA 98, 6209–6214 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rideout, W. M. et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nature Genet. 24, 109–110 (2000).

    CAS  PubMed  Google Scholar 

  17. Wakayama, T. & Yanagimachi, R. Cloning of male mice from adult tail-tip cells. Nature Genet. 22, 127–128 (1999).

    CAS  PubMed  Google Scholar 

  18. Ogura, A. et al. Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol. Reprod. 62, 1579–1584 (2000).

    CAS  PubMed  Google Scholar 

  19. Inoue, K. et al. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr. Biol. 15, 1114–1118 (2005).

    CAS  PubMed  Google Scholar 

  20. Blelloch, R. et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells published online 18 May 2006 (doi:10.1634/stemcells.2006-0050).

  21. Inoue, K. et al. Inefficient reprogramming of the haematopoietic stem cell genome following nuclear transfer. J. Cell Sci. 119, 1985–1991 (2006).

    CAS  PubMed  Google Scholar 

  22. Ng, R. K. & Gurdon, J. B. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl Acad. Sci. USA 102, 1957–1962 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohda, T. et al. Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biol. Reprod. 73, 1302–1311 (2005).

    CAS  PubMed  Google Scholar 

  24. Humpherys, D. et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl Acad. Sci. USA 99, 12889–12894 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaenisch, R. Human cloning — the science and ethics of nuclear transplantation. N. Engl. J. Med. 351, 2787–2791 (2004).

    CAS  PubMed  Google Scholar 

  26. Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992 (2000).

    CAS  PubMed  Google Scholar 

  27. Brambrink, T., Hochedlinger, K., Bell, G. & Jaenisch, R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl Acad. Sci. USA 103, 933–938 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cibelli, J. B. et al. Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. J. Regen. Med. 2, 25–31 (2001).

    Google Scholar 

  29. Chen, Y. et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res. 13, 251–263 (2003).

    ADS  PubMed  Google Scholar 

  30. Dey, R., Barrientos, A. & Moraes, C. T. Functional constraints of nuclear–mitochondrial DNA interactions in xenomitochondrial rodent cell lines. J. Biol. Chem. 275, 31520–31527 (2000).

    CAS  PubMed  Google Scholar 

  31. Simerly, C. et al. Molecular correlates of primate nuclear transfer failures. Science 300, 297 (2003).

    PubMed  Google Scholar 

  32. Simerly, C. et al. Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction. Dev. Biol. 276, 237–252 (2004).

    CAS  PubMed  Google Scholar 

  33. Meng, L., Ely, J. J., Stouffer, R. L. & Wolf, D. P. Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57, 454–459 (1997).

    CAS  PubMed  Google Scholar 

  34. Blau, H. M. & Blakely, B. T. Plasticity of cell fate: insights from heterokaryons. Semin. Cell Dev. Biol. 10, 267–272 (1999).

    CAS  PubMed  Google Scholar 

  35. Miller, R. A. & Ruddle, F. H. Pluripotent teratocarcinoma–thymus somatic cell hybrids. Cell 9, 45–55 (1976).

    CAS  PubMed  Google Scholar 

  36. Tada, M. et al. Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev. Dyn. 227, 504–510 (2003).

    CAS  PubMed  Google Scholar 

  37. Tada, M., Tada, T., Lefebvre, L., Barton, S. C. & Surani, M. A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558 (2001).

    CAS  PubMed  Google Scholar 

  39. Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    ADS  CAS  PubMed  Google Scholar 

  40. Yu, J., Vodyanik, M. A., He, P., Slukvin, I. I. & Thomson, J. A. Human embryonic stem cells reprogram myeloid precursors following cell–cell fusion. Stem Cells 24, 168–176 (2005).

    PubMed  Google Scholar 

  41. Rousset, J. P., Bucchini, D. & Jami, J. Hybrids between F9 nullipotent teratocarcinoma and thymus cells produce multidifferentiated tumors in mice. Dev. Biol. 96, 331–336 (1983).

    CAS  PubMed  Google Scholar 

  42. Oshima, R. G., McKerrow, J. & Cox, D. Murine embryonal carcinoma hybrids: decreased ability to spontaneously differentiate as a dominant trait. J. Cell Physiol. 109, 195–204 (1981).

    CAS  PubMed  Google Scholar 

  43. Do, J. T. & Scholer, H. R. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22, 941–949 (2004).

    CAS  PubMed  Google Scholar 

  44. Byrne, J. A., Simonsson, S., Western, P. S. & Gurdon, J. B. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13, 1206–1213 (2003).

    CAS  PubMed  Google Scholar 

  45. Simonsson, S. & Gurdon, J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nature Cell Biol. 6, 984–990 (2004).

    CAS  PubMed  Google Scholar 

  46. Kikyo, N., Wade, P. A., Guschin, D., Ge, H. & Wolffe, A. P. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289, 2360–2362 (2000).

    ADS  CAS  PubMed  Google Scholar 

  47. Hansis, C., Barreto, G., Maltry, N. & Niehrs, C. Nuclear reprogramming of human somatic cells by Xenopus egg extract requires BRG1. Curr. Biol. 14, 1475–1480 (2004).

    CAS  PubMed  Google Scholar 

  48. Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y. & Mechali, M. Mitotic remodeling of the replicon and chromosome structure. Cell 123, 787–801 (2005).

    CAS  PubMed  Google Scholar 

  49. Gurdon, J. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640 (1962).

    CAS  PubMed  Google Scholar 

  50. Taranger, C. K. et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell 16, 5719–5735 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hakelien, A. M., Landsverk, H. B., Robl, J. M., Skalhegg, B. S. & Collas, P. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nature Biotechnol. 20, 460–466 (2002).

    CAS  Google Scholar 

  52. Raff, M. Adult stem cell plasticity: fact or artifact? Annu. Rev. Cell Dev. Biol. 19, 1–22 (2003).

    CAS  PubMed  Google Scholar 

  53. Andrews, P. W. From teratocarcinomas to embryonic stem cells. Phil. Trans. R. Soc. Lond. B 357, 405–417 (2002).

    Google Scholar 

  54. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    ADS  CAS  PubMed  Google Scholar 

  55. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992).

    CAS  PubMed  Google Scholar 

  57. Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551 (1992).

    ADS  CAS  PubMed  Google Scholar 

  58. Labosky, P. A., Barlow, D. P. & Hogan, B. L. Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120, 3197–3204 (1994).

    CAS  PubMed  Google Scholar 

  59. Tada, T. et al. Epigenotype switching of imprintable loci in embryonic germ cells. Dev. Genes Evol. 207, 551–561 (1998).

    CAS  PubMed  Google Scholar 

  60. Rossant, J. & McBurney, M. W. The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. J. Embryol. Exp. Morphol. 70, 99–112 (1982).

    CAS  PubMed  Google Scholar 

  61. Blelloch, R. H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl Acad. Sci. USA 101, 13985–13990 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stewart, C. L., Gadi, I. & Bhatt, H. Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628 (1994).

    CAS  PubMed  Google Scholar 

  63. Stewart, T. A. & Mintz, B. Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo. J. Exp. Zool. 224, 465–469 (1982).

    CAS  PubMed  Google Scholar 

  64. Durcova-Hills, G., Adams, I. R., Barton, S. C., Surani, M. A. & McLaren, A. The role of exogenous FGF-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells (in the press).

  65. Kehler, J. et al. Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    CAS  PubMed  Google Scholar 

  67. Chung, Y. et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439, 216–219 (2005).

    ADS  PubMed  Google Scholar 

  68. Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004).

    CAS  PubMed  Google Scholar 

  69. Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006).

    ADS  CAS  PubMed  Google Scholar 

  70. Zwaka, T. P. & Thomson, J. A. A germ cell origin of embryonic stem cells? Development 132, 227–233 (2005).

    CAS  PubMed  Google Scholar 

  71. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    ADS  CAS  PubMed  Google Scholar 

  72. Kogler, G. et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200, 123–135 (2004).

    PubMed  PubMed Central  Google Scholar 

  73. Snow, M. H. L. Gastrulation in the mouse: growth and regionalization of the epiblast. J. Embryol. Exp. Morphol. 42, 293–303 (1977).

    Google Scholar 

  74. Yamazaki, Y. et al. Adult mice cloned from migrating primordial germ cells. Proc. Natl Acad. Sci. USA 102, 11361–11366 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23 (2002).

    CAS  PubMed  Google Scholar 

  76. Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807–1817 (2002).

    CAS  PubMed  Google Scholar 

  77. Hernandez, L., Kozlov, S., Piras, G. & Stewart, C. L. Paternal and maternal genomes confer opposite effects on proliferation, cell-cycle length, senescence, and tumor formation. Proc. Natl Acad. Sci. USA 100, 13344–13349 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Holm, T. M. et al. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8, 275–285 (2005).

    CAS  PubMed  Google Scholar 

  79. Chambers, I. & Smith, A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23, 7150–7160 (2004).

    CAS  PubMed  Google Scholar 

  80. Li, X., Kato, Y. & Tsunoda, Y. Comparative analysis of development-related gene expression in mouse preimplantation embryos with different developmental potential. Mol. Reprod. Dev. 72, 152–160 (2005).

    CAS  PubMed  Google Scholar 

  81. Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680 (2003).

    CAS  PubMed  Google Scholar 

  82. Boiani, M., Eckardt, S., Scholer, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    CAS  PubMed  Google Scholar 

  85. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    CAS  PubMed  Google Scholar 

  86. Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    ADS  CAS  PubMed  Google Scholar 

  88. Bernstein, B. E. et al. Epigenetic landscape in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  89. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    CAS  PubMed  Google Scholar 

  90. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    ADS  CAS  PubMed  Google Scholar 

  91. Baba, Y., Garrett, K. P. & Kincade, P. W. Constitutively active β-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity 23, 599–609 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    ADS  CAS  PubMed  Google Scholar 

  93. Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277 (2002).

    CAS  PubMed  Google Scholar 

  94. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    CAS  PubMed  Google Scholar 

  95. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    CAS  PubMed  Google Scholar 

  96. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    CAS  PubMed  Google Scholar 

  97. Wakayama, S. et al. Establishment of male and female nuclear transfer embryonic stem cell lines from different mouse strains and tissues. Biol. Reprod. 72, 932–936 (2005).

    CAS  PubMed  Google Scholar 

  98. Kennedy, D. Editorial retraction. Science 311, 335 (2006).

    CAS  PubMed  Google Scholar 

  99. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    ADS  PubMed  Google Scholar 

  100. Lacham-Kaplan, O., Chy, H. & Trounson, A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells 24, 266–273 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Hogan, L. Looijenga, A. Wutz, N. Geijsen, M. W. Lensch and members of the Jaenisch laboratory for discussion and critical reading of the manuscript. Support to K.H. came from a Genzyme postdoctoral fellowship. R.J. is supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Jaenisch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hochedlinger, K., Jaenisch, R. Nuclear reprogramming and pluripotency. Nature 441, 1061–1067 (2006). https://doi.org/10.1038/nature04955

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04955

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing