Direct electronic measurement of the spin Hall effect

Abstract

The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics1. Among the different approaches for spin generation and manipulation, spin–orbit coupling—which couples the spin of an electron to its momentum—is attracting considerable interest. In a spin–orbit-coupled system, a non-zero spin current is predicted in a direction perpendicular to the applied electric field, giving rise to a spin Hall effect2,3,4. Consistent with this effect, electrically induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel5 and in two-dimensional electron gases in semiconductor heterostructures6,7. Here we report electrical measurements of the spin Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Geometry of the devices and measurement schemes.
Figure 2: Spin-transistor measurements and spin precession.
Figure 3: Spin Hall effect.
Figure 4: Overall change of the spin Hall resistance, Δ RSH, between large negative and large positive B.

References

  1. 1

    Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971)

    ADS  Google Scholar 

  3. 3

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971)

    ADS  Article  Google Scholar 

  4. 4

    Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys. 1, 31–35 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Zhang, S. Spin Hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393–396 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004)

    ADS  Article  Google Scholar 

  11. 11

    Shchelushkin, R. V. & Brataas, A. Spin Hall effects in diffusive normal metals. Phys. Rev. B 71, 045123 (2005)

    ADS  Article  Google Scholar 

  12. 12

    Shchelushkin, R. V. & Brataas, A. Spin Hall effect, Hall effect, and spin precession in diffusive normal metals. Phys. Rev. B 72, 073110 (2005)

    ADS  Article  Google Scholar 

  13. 13

    Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic spin valve. Nature 416, 713–716 (2002)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Valenzuela, S. O. & Tinkham, M. Spin-polarized tunneling in room-temperature spin valves. Appl. Phys. Lett. 85, 5914–5916 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Valenzuela, S. O., Monsma, D. J., Marcus, C. M., Narayanamurti, V. & Tinkham, M. Spin polarized tunneling at finite bias. Phys. Rev. Lett. 94, 196601 (2005)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Monsma, D. J. & Parkin, S. S. P. Spin polarization of tunneling current from ferromagnet/Al2O3 interfaces using copper-doped aluminum superconducting films. Appl. Phys. Lett. 77, 720–722 (2000)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Qi, Y. & Zhang, S. Spin diffusion at finite electric and magnetic fields. Phys. Rev. B 67, 052407 (2003)

    ADS  Article  Google Scholar 

  18. 18

    Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Johnson, M. & Silsbee, R. H. Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. Phys. Rev. B 37, 5312–5325 (1988)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Johnson, M. & Silsbee, R. H. Spin injection experiment. Phys. Rev. B 37, 5326–5335 (1988)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Ji, Y., Hoffmann, A., Jiang, J. S. & Bader, S. D. Spin injection, diffusion, and detection in lateral spin-valves. Appl. Phys. Lett. 85, 6218–6220 (2004)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Urech, M., Korenivski, V., Poli, N. & Haviland, D. B. Direct demonstration of decoupling of spin and charge currents in nanostructures. Nano Lett. 6, 871–874 (2006)

    ADS  CAS  Article  Google Scholar 

  23. 23

    O'Handley, R. C. Modern Magnetic Materials (Wiley & Sons, New York, 2000)

    Google Scholar 

  24. 24

    Zhang, S. Probing spin currents in semiconductors. J. Appl. Phys. 89, 7564–7566 (2001)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Engel, H. A., Halperin, B. I. & Rashba, E. I. Theory of spin Hall conductivity in n-doped GaAs. Phys. Rev. Lett. 95, 166605 (2005)

    ADS  Article  Google Scholar 

  26. 26

    Tse, W. K. & Das Sarma, S. Spin Hall effect in doped semiconductor structures. Phys. Rev. Lett. 96, 056601 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986)

    Google Scholar 

Download references

Acknowledgements

We thank L. DiCarlo, H. A. Engel, D. J. Monsma and W. D. Oliver for a critical reading of the manuscript. This research was supported in part by the US National Science Foundation and the US Office of Naval Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. O. Valenzuela.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1 and 2, with details on the sample fabrication procedure and raw data for the spin-transistor measurements. (PDF 423 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valenzuela, S., Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006). https://doi.org/10.1038/nature04937

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing