Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of the superfluid phase transition in ultracold Fermi gases

Abstract

Phase transitions are dramatic phenomena: water freezes into ice, atomic spins spontaneously align in a magnet, and liquid helium becomes superfluid. Sometimes, such a drastic change in behaviour is accompanied by a visible change in appearance. The hallmark of Bose–Einstein condensation and superfluidity in trapped, weakly interacting Bose gases is the sudden formation of a dense central core inside a thermal cloud1,2,3,4,5,6,7. However, in strongly interacting gases—such as the recently observed fermionic superfluids8—there is no longer a clear separation between the superfluid and the normal parts of the cloud. The detection of fermion pair condensates has required magnetic field sweeps9,10,11 into the weakly interacting regime, and the quantitative description of these sweeps presents a major theoretical challenge. Here we report the direct observation of the superfluid phase transition in a strongly interacting gas of 6Li fermions, through sudden changes in the shape of the clouds—in complete analogy to the case of weakly interacting Bose gases. By preparing unequal mixtures of the two spin components involved in the pairing12,13, we greatly enhance the contrast between the superfluid core and the normal component. Furthermore, the distribution of non-interacting excess atoms serves as a direct and reliable thermometer. Even in the normal state, strong interactions significantly deform the density profile of the majority spin component. We show that it is these interactions that drive the normal-to-superfluid transition at the critical population imbalance of 70 ± 5 per cent (ref. 12).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct observation of the phase transition in a strongly interacting two-state mixture of fermions with imbalanced spin populations.
Figure 2: Characterization of the phase transition.
Figure 3: Quantum phase transition to superfluidity for decreasing population imbalance.

Similar content being viewed by others

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Zwierlein, M. W. et al. Observation of Bose-Einstein condensation of molecules. Phys. Rev. Lett. 91, 250401 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Bartenstein, M. et al. Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas. Phys. Rev. Lett. 92, 120401 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bourdel, T. et al. Experimental study of the BEC-BCS crossover region in lithium 6. Phys. Rev. Lett. 93, 050401 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Partridge, G. B., Strecker, K. E., Kamar, R. I., Jack, M. W. & Hulet, R. G. Molecular probe of pairing in the BEC-BCS crossover. Phys. Rev. Lett. 95, 020404 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zwierlein, M. W. et al. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zwierlein, M. W., Schunck, C. H., Stan, C. A., Raupach, S. M. F. & Ketterle, W. Formation dynamics of a fermion pair condensate. Phys. Rev. Lett. 94, 180401 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zwierlein, M. W., Schirotzek, A., Schunck, C. H. & Ketterle, W. Fermionic superfluidity with imbalanced spin populations. Science 311, 492–496 (2006). Published online 21 December 2005 (doi:10.1126/science.1122318)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Partridge, G. B., Li, W., Kamar, R. I., Liao, Y. & Hulet, R. G. Pairing and phase separation in a polarized Fermi gas. Science 311, 503–505 (2006). Published online 21 December 2005 (doi:10.1126/science.1122876)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Chiofalo, M. L., Kokkelmans, S. J. J. M. F., Milstein, J. N. & Holland, M. J. Signatures of resonance superfluidity in a quantum Fermi gas. Phys. Rev. Lett. 88, 090402 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)

    Article  ADS  PubMed  Google Scholar 

  16. Perali, A., Pieri, P., Pisani, L. & Strinati, G. C. BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms. Phys. Rev. Lett. 92, 220404 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Stajic, J., Chen, Q. & Levin, K. Density profiles of strongly interacting trapped Fermi gases. Phys. Rev. Lett. 94, 060401 (2005)

    Article  ADS  PubMed  Google Scholar 

  18. Diener, R. B. & Ho, T.-L. Projecting fermion pair condensates into molecular condensates. Preprint at http://arxiv.org/cond-mat/0404517 (2004).

  19. Perali, A., Pieri, P. & Strinati, G. C. Extracting the condensate density from projection experiments with Fermi gases. Phys. Rev. Lett. 95, 010407 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Altman, E. & Vishwanath, A. Dynamic projection on Feshbach molecules: A probe of pairing and phase fluctuations. Phys. Rev. Lett. 95, 110404 (2005)

    Article  ADS  PubMed  Google Scholar 

  21. Chen, Q., Regal, C. A., Greiner, M., Jin, D. S. & Levin, K. Understanding the superfluid phase diagram in trapped Fermi gases. Phys. Rev. A 73, 041603 (2006)

    Article  ADS  Google Scholar 

  22. Bedaque, P. F., Caldas, H. & Rupak, G. Phase separation in asymmetrical fermion superfluids. Phys. Rev. Lett. 91, 247002 (2003)

    Article  ADS  PubMed  Google Scholar 

  23. Caldas, H. Cold asymmetrical fermion superfluids. Phys. Rev. A 69, 063602 (2004)

    Article  ADS  Google Scholar 

  24. Sheehy, D. E. & Radzihovsky, L. BEC-BCS crossover in “magnetized” Feshbach-resonantly paired superfluids. Phys. Rev. Lett. 96, 060401 (2006)

    Article  ADS  PubMed  Google Scholar 

  25. Kinast, J. et al. Heat capacity of a strongly-interacting Fermi gas. Science 307, 1296–1299 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Mizushima, T., Machida, K. & Ichioka, M. Direct imaging of spatially modulated superfluid phases in atomic fermion systems. Phys. Rev. Lett. 94, 060404 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Pieri, P. & Strinati, G. C. Trapped fermions with density imbalance in the Bose-Einstein condensate limit. Phys. Rev. Lett. 96, 150404 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kinnunen, J., Jensen, L. M. & Törmä, P. Strongly interacting Fermi gases with density imbalance. Phys. Rev. Lett. 96, 110403 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. De Silva, T. N. & Mueller, E. J. Profiles of near-resonant population-imbalanced trapped Fermi gases. Phys. Rev. A 73, 051602(R) (2006)

    Article  ADS  Google Scholar 

  30. Yi, W. & Duan, L.-M. Trapped fermions across a Feshbach resonance with population imbalance. Phys. Rev. A 73, 031604(R) (2006)

    Article  ADS  Google Scholar 

  31. Chevy, F. Density profile of a trapped strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. Lett. 96, 130401 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Haque, M. & Stoof, H. T. C. Pairing of a trapped resonantly-interacting fermion mixture with unequal spin populations. Preprint at http://arxiv.org/cond-mat/0601321 (2006).

  33. Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the participants of the Aspen winter conference on strongly interacting fermions for discussions. This work was supported by the NSF, ONR and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. Zwierlein.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1 and 2, which provide further signatures of the condensate on resonance. A Supplementary Discussion on hydrodynamic versus ballistic expansion is included. Furthermore, we obtain lower and upper bounds for the critical chemical potential difference on resonance, which excludes the possibility of BCS-type superfluidity with unequal densities. This file also contains Supplementary Methods. (PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwierlein, M., Schunck, C., Schirotzek, A. et al. Direct observation of the superfluid phase transition in ultracold Fermi gases. Nature 442, 54–58 (2006). https://doi.org/10.1038/nature04936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04936

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing