Abstract
Phase transitions are dramatic phenomena: water freezes into ice, atomic spins spontaneously align in a magnet, and liquid helium becomes superfluid. Sometimes, such a drastic change in behaviour is accompanied by a visible change in appearance. The hallmark of Bose–Einstein condensation and superfluidity in trapped, weakly interacting Bose gases is the sudden formation of a dense central core inside a thermal cloud1,2,3,4,5,6,7. However, in strongly interacting gases—such as the recently observed fermionic superfluids8—there is no longer a clear separation between the superfluid and the normal parts of the cloud. The detection of fermion pair condensates has required magnetic field sweeps9,10,11 into the weakly interacting regime, and the quantitative description of these sweeps presents a major theoretical challenge. Here we report the direct observation of the superfluid phase transition in a strongly interacting gas of 6Li fermions, through sudden changes in the shape of the clouds—in complete analogy to the case of weakly interacting Bose gases. By preparing unequal mixtures of the two spin components involved in the pairing12,13, we greatly enhance the contrast between the superfluid core and the normal component. Furthermore, the distribution of non-interacting excess atoms serves as a direct and reliable thermometer. Even in the normal state, strong interactions significantly deform the density profile of the majority spin component. We show that it is these interactions that drive the normal-to-superfluid transition at the critical population imbalance of 70 ± 5 per cent (ref. 12).
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Direct observation of excitonic instability in Ta2NiSe5
Nature Communications Open Access 30 March 2021
-
Strongly correlated Fermions strongly coupled to light
Nature Communications Open Access 12 June 2020
-
Shear Viscosity of Uniform Fermi Gases with Population Imbalance
Scientific Reports Open Access 05 March 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)
Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)
Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)
Zwierlein, M. W. et al. Observation of Bose-Einstein condensation of molecules. Phys. Rev. Lett. 91, 250401 (2003)
Bartenstein, M. et al. Crossover from a molecular Bose-Einstein condensate to a degenerate Fermi gas. Phys. Rev. Lett. 92, 120401 (2004)
Bourdel, T. et al. Experimental study of the BEC-BCS crossover region in lithium 6. Phys. Rev. Lett. 93, 050401 (2004)
Partridge, G. B., Strecker, K. E., Kamar, R. I., Jack, M. W. & Hulet, R. G. Molecular probe of pairing in the BEC-BCS crossover. Phys. Rev. Lett. 95, 020404 (2005)
Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005)
Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)
Zwierlein, M. W. et al. Condensation of pairs of fermionic atoms near a Feshbach resonance. Phys. Rev. Lett. 92, 120403 (2004)
Zwierlein, M. W., Schunck, C. H., Stan, C. A., Raupach, S. M. F. & Ketterle, W. Formation dynamics of a fermion pair condensate. Phys. Rev. Lett. 94, 180401 (2005)
Zwierlein, M. W., Schirotzek, A., Schunck, C. H. & Ketterle, W. Fermionic superfluidity with imbalanced spin populations. Science 311, 492–496 (2006). Published online 21 December 2005 (doi:10.1126/science.1122318)
Partridge, G. B., Li, W., Kamar, R. I., Liao, Y. & Hulet, R. G. Pairing and phase separation in a polarized Fermi gas. Science 311, 503–505 (2006). Published online 21 December 2005 (doi:10.1126/science.1122876)
Chiofalo, M. L., Kokkelmans, S. J. J. M. F., Milstein, J. N. & Holland, M. J. Signatures of resonance superfluidity in a quantum Fermi gas. Phys. Rev. Lett. 88, 090402 (2002)
Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)
Perali, A., Pieri, P., Pisani, L. & Strinati, G. C. BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms. Phys. Rev. Lett. 92, 220404 (2004)
Stajic, J., Chen, Q. & Levin, K. Density profiles of strongly interacting trapped Fermi gases. Phys. Rev. Lett. 94, 060401 (2005)
Diener, R. B. & Ho, T.-L. Projecting fermion pair condensates into molecular condensates. Preprint at http://arxiv.org/cond-mat/0404517 (2004).
Perali, A., Pieri, P. & Strinati, G. C. Extracting the condensate density from projection experiments with Fermi gases. Phys. Rev. Lett. 95, 010407 (2005)
Altman, E. & Vishwanath, A. Dynamic projection on Feshbach molecules: A probe of pairing and phase fluctuations. Phys. Rev. Lett. 95, 110404 (2005)
Chen, Q., Regal, C. A., Greiner, M., Jin, D. S. & Levin, K. Understanding the superfluid phase diagram in trapped Fermi gases. Phys. Rev. A 73, 041603 (2006)
Bedaque, P. F., Caldas, H. & Rupak, G. Phase separation in asymmetrical fermion superfluids. Phys. Rev. Lett. 91, 247002 (2003)
Caldas, H. Cold asymmetrical fermion superfluids. Phys. Rev. A 69, 063602 (2004)
Sheehy, D. E. & Radzihovsky, L. BEC-BCS crossover in “magnetized” Feshbach-resonantly paired superfluids. Phys. Rev. Lett. 96, 060401 (2006)
Kinast, J. et al. Heat capacity of a strongly-interacting Fermi gas. Science 307, 1296–1299 (2005)
Mizushima, T., Machida, K. & Ichioka, M. Direct imaging of spatially modulated superfluid phases in atomic fermion systems. Phys. Rev. Lett. 94, 060404 (2005)
Pieri, P. & Strinati, G. C. Trapped fermions with density imbalance in the Bose-Einstein condensate limit. Phys. Rev. Lett. 96, 150404 (2006)
Kinnunen, J., Jensen, L. M. & Törmä, P. Strongly interacting Fermi gases with density imbalance. Phys. Rev. Lett. 96, 110403 (2006)
De Silva, T. N. & Mueller, E. J. Profiles of near-resonant population-imbalanced trapped Fermi gases. Phys. Rev. A 73, 051602(R) (2006)
Yi, W. & Duan, L.-M. Trapped fermions across a Feshbach resonance with population imbalance. Phys. Rev. A 73, 031604(R) (2006)
Chevy, F. Density profile of a trapped strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. Lett. 96, 130401 (2006)
Haque, M. & Stoof, H. T. C. Pairing of a trapped resonantly-interacting fermion mixture with unequal spin populations. Preprint at http://arxiv.org/cond-mat/0601321 (2006).
Clogston, A. M. Upper limit for the critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962)
Acknowledgements
We thank the participants of the Aspen winter conference on strongly interacting fermions for discussions. This work was supported by the NSF, ONR and NASA.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Supplementary information
Supplementary Notes
This file contains Supplementary Figures 1 and 2, which provide further signatures of the condensate on resonance. A Supplementary Discussion on hydrodynamic versus ballistic expansion is included. Furthermore, we obtain lower and upper bounds for the critical chemical potential difference on resonance, which excludes the possibility of BCS-type superfluidity with unequal densities. This file also contains Supplementary Methods. (PDF 232 kb)
Rights and permissions
About this article
Cite this article
Zwierlein, M., Schunck, C., Schirotzek, A. et al. Direct observation of the superfluid phase transition in ultracold Fermi gases. Nature 442, 54–58 (2006). https://doi.org/10.1038/nature04936
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature04936
This article is cited by
-
Direct observation of excitonic instability in Ta2NiSe5
Nature Communications (2021)
-
Strongly correlated Fermions strongly coupled to light
Nature Communications (2020)
-
Shear Viscosity of Uniform Fermi Gases with Population Imbalance
Scientific Reports (2018)
-
Possible ground states and parallel magnetic-field-driven phase transitions of collinear antiferromagnets
npj Computational Materials (2016)
-
Reliable Equation of State for Composite Bosons in the 2D BCS-BEC Crossover
Journal of Superconductivity and Novel Magnetism (2016)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.