Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Assembly dynamics of microtubules at molecular resolution


Microtubules are highly dynamic protein polymers1 that form a crucial part of the cytoskeleton in all eukaryotic cells. Although microtubules are known to self-assemble from tubulin dimers, information on the assembly dynamics of microtubules has been limited, both in vitro2,3 and in vivo4,5, to measurements of average growth and shrinkage rates over several thousands of tubulin subunits. As a result there is a lack of information on the sequence of molecular events that leads to the growth and shrinkage of microtubule ends. Here we use optical tweezers to observe the assembly dynamics of individual microtubules at molecular resolution. We find that microtubules can increase their overall length almost instantaneously by amounts exceeding the size of individual dimers (8 nm). When the microtubule-associated protein XMAP215 (ref. 6) is added, this effect is markedly enhanced and fast increases in length of about 40–60 nm are observed. These observations suggest that small tubulin oligomers are able to add directly to growing microtubules and that XMAP215 speeds up microtubule growth by facilitating the addition of long oligomers. The achievement of molecular resolution on the microtubule assembly process opens the way to direct studies of the molecular mechanism by which the many recently discovered microtubule end-binding proteins regulate microtubule dynamics in living cells7,8,9.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Measuring growth dynamics of MTs with optical tweezers.
Figure 2: High-resolution details of growth and shrinkage events.
Figure 3: Quantifying the sizes of the large steps with our step-fitting algorithm.
Figure 4: MT end mechanics.


  1. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997)

    Article  CAS  Google Scholar 

  2. Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light-microscopy—rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988)

    Article  CAS  Google Scholar 

  3. Fygenson, D. K., Braun, E. & Libchaber, A. Phase diagram of microtubules. Phys. Rev. E 50, 1579–1588 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Komarova, Y. A., Vorobjev, I. A. & Borisy, G. G. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. 115, 3527–3539 (2002)

    CAS  PubMed  Google Scholar 

  5. Piehl, M. & Cassimeris, L. Organization and dynamics of growing microtubule plus ends during early mitosis. Mol. Biol. Cell 14, 916–925 (2003)

    Article  CAS  Google Scholar 

  6. Kinoshita, K., Habermann, B. & Hyman, A. A. XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol. 12, 267–273 (2002)

    Article  CAS  Google Scholar 

  7. Schuyler, S. C. & Pellman, D. Microtubule ‘plus-end-tracking proteins’: the end is just the beginning. Cell 105, 421–424 (2001)

    Article  CAS  Google Scholar 

  8. Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005)

    Article  CAS  Google Scholar 

  10. Chretien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends—2-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995)

    Article  CAS  Google Scholar 

  11. Wang, H.-W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Wang, H.-W., Long, S., Finley, K. R. & Nogales, E. Assembly of GMPCPP-bound tubulin into helical ribbons and tubes and effect of colchicine. Cell Cycle 4, 1157–1160 (2005)

    Article  CAS  Google Scholar 

  13. Kerssemakers, J. W. J., Janson, M. E., Van der Horst, A. & Dogterom, M. Optical trap setup for measuring microtubule pushing forces. Appl. Phys. Lett. 83, 4441–4443 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Gard, D., Becker, B. & Romney, S. MAPping the eukaryotic tree of life: Structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int. Rev. Cytol. 239, 179–272 (2004)

    Article  CAS  Google Scholar 

  15. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203–2215 (1987)

    Article  CAS  Google Scholar 

  16. Vasquez, R. J., Gard, D. L. & Lynne, C. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 (1994)

    Article  CAS  Google Scholar 

  17. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003)

    Article  CAS  Google Scholar 

  20. Janson, M. E. & Dogterom, M. Scaling of microtubule force–velocity curves obtained at different tubulin concentrations. Phys. Rev. Lett. 92, 248101 (2004)

    Article  ADS  Google Scholar 

  21. Shirasu-Hiza, M., Coughlin, P. & Mitchison, T. Identification of XMAP215 as a microtubule-destabilizing factor in Xenopus egg extract by biochemical purification. J. Cell Biol. 161, 349–358 (2003)

    Article  CAS  Google Scholar 

  22. Cassimeris, L., Gard, D., Tran, P. T. & Erickson, H. P. XMAP215 is a long thin molecule that does not increase microtubule stiffness. J. Cell Sci. 114, 3025–3033 (2001)

    CAS  PubMed  Google Scholar 

  23. Janosi, I. M., Chretien, D. & Flyvberg, H. Modeling elastic properties of microtubule tips and walls. Eur. Biophys. J. 27, 501–513 (1998)

    Article  CAS  Google Scholar 

  24. Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748–20753 (2000)

    Article  CAS  Google Scholar 

  25. VanBuren, V., Cassimeris, L. & Odde, D. J. A mechanochemical model of microtubule structure and self-assembly kinetics. Biophys. J. 89, 2911–2926 (2005)

    Article  CAS  Google Scholar 

  26. Diamantopoulos, G. S. et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol. 144, 99–112 (1999)

    Article  CAS  Google Scholar 

  27. Arnal, I., Heichette, C., Diamantopoulos, G. S. & Chretien, D. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr. Biol. 14, 2086–2095 (2004)

    Article  CAS  Google Scholar 

  28. Folker, E. S., Baker, B. M. & Goodson, H. V. Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of CLIP-170 plus-end tracking behaviour. Mol. Biol. Cell 16, 5373–5384 (2005)

    Article  CAS  Google Scholar 

  29. Schek, H. T. III & Hunt, A. J. Micropatterned structures for studying the mechanics of biological polymers. Biomed. Microdevices 7, 41–46 (2005)

    Article  CAS  Google Scholar 

  30. Pierce, D. W. & Vale, R. D. Assaying processive movement of kinesin by fluorescence microscopy. Methods. Enzymol. 298, 154–171 (1998)

    Article  CAS  Google Scholar 

Download references


We thank T. Hyman and T. Mitchison for discussions; K. Kinoshita for help with the purification of XMAP215; S. Tans, K. Kuipers and D. Drechsel for a critical reading of the manuscript; and M. Footer for the gift of axonemes. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is supported financially by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marileen Dogterom.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Methods 1

Additional methods used in this work. (PDF 24 kb)

Supplementary Methods 2

Key-hole trap for MT length measurements. The file also contains Supplementary Figure A1 and one reference. (PDF 112 kb)

Supplementary Methods 3

Step fitting algorithm. The file also contains Supplementary Figures C1–C3. (PDF 184 kb)

Supplementary Data

Dynamics of freely growing microtubules: effect of XMAP215. The file also contains Supplementary Figure B1, Supplementary Table 1 and one reference. (PDF 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kerssemakers, J., Laura Munteanu, E., Laan, L. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing