Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A low fraction of nitrogen in molecular form in a dark cloud

Abstract

Nitrogen is the fifth most abundant element in the Universe. In the interstellar medium, it has been thought to be mostly molecular (N2)1. However, N2 has no observable rotational or vibrational transitions, so its abundance in the interstellar medium remains poorly known. In comets, the N2 abundance is very low2,3, while the elemental nitrogen abundance is deficient with respect to the solar value. Moreover, large nitrogen isotopic anomalies are observed in meteorites and interstellar dust particles4. Here we report the N2H+ (and by inference the N2) abundance inside a cold dark molecular cloud. We find that only a small fraction of nitrogen in the gas phase is molecular, with most of it being atomic. Because the compositions of comets probably reflect those of dark clouds5, this result explains the low N2 abundance in comets. We argue that the elemental nitrogen abundance deficiency in comets can be understood if the atomic oxygen abundance is lower than predicted by present chemical models. Furthermore, the lack of molecular nitrogen in molecular clouds explains the nitrogen anomalies in meteorites and interstellar dust particles, as nitrogen fractionation is enhanced if gaseous nitrogen is atomic6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of the metal abundance inside the B68 core.
Figure 2
Figure 3: Determination of the fraction of the elemental nitrogen in molecular form.

Similar content being viewed by others

References

  1. Herbst, E. & Klemperer, W. The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505–534 (1973)

    Article  ADS  CAS  Google Scholar 

  2. Cochran, A. L., Cochran, W. D. & Barker, E. S. N2+ and CO+ in Comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale-Bopp). Icarus 146, 583–593 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Iro, N., Gautier, D., Hersant, F., Bockelée-Morvan, D. & Lunine, J. I. An interpretation of the nitrogen deficiency in comets. Icarus 161, 511–532 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Messenger, S., Keller, L. P., Thomas, K. L. & Walker, R. M. Nitrogen petrography in two 15N-rich IDPs. Meteorit. Planet. Sci. 31, A88 (1996)

    Google Scholar 

  5. Irvine, W. M., Schloerb, F. P., Crovisier, J., Fegley, B. & Mumma, M. J. Comets: a link between interstellar and nebular chemistry. Protostars Planets IV, 1159–1200 (2000)

    ADS  Google Scholar 

  6. Charnley, S. B. & Rodgers, S. D. The end of interstellar chemistry as the origin of nitrogen in comets and meteorites. Astrophys. J. Lett. 569, L133–L137 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Linke, R. A., Langer, W. D. & Guelin, M. Detection of H15NN+ and HN15N+ in interstellar clouds. Astrophys. J. Lett. 271, L85–L88 (1983)

    Article  ADS  CAS  Google Scholar 

  8. Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M. & Comito, C. Systematic molecular differentiation in starless cores. Astrophys. J. 569, 815–835 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Bergin, E. A., Alves, J., Huard, T. & Lada, C. J. N2H+ and C18O depletion in a cold dark cloud. Astrophys. J. Lett. 570, L101–L104 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Pagani, L., Pardo, J.-R., Apponi, A. J., Bacmann, A. & Cabrit, S. L183 (L134N) revisited. III. The gas depletion. Astron. Astrophys. 429, 181–192 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Öberg, K. I. et al. Competition between CO and N2 desorption from interstellar ices. Astrophys. J. Lett. 621, L33–L36 (2005)

    Article  ADS  Google Scholar 

  12. Geppert, W. D. et al. Dissociative recombination of N2H+: Evidence for fracture of the NN bond. Astrophys. J. 609, 459–464 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Bergin, E. A., Langer, W. D. & Goldsmith, P. F. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption. Astrophys. J. 441, 222–243 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Alves, J. F., Lada, C. J. & Lada, E. A. Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. Nature 409, 159–161 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bergin, E. A. et al. The thermal structure of gas in pre-stellar cores: a case study of Barnard 68. Astrophys. J. (in the press)

  16. Caselli, P., Walmsley, C. M., Terzieva, R. & Herbst, E. The ionization fraction in dense cloud cores. Astrophys. J. 499, 234–249 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Caselli, P. et al. Molecular ions in L1544. II. The ionization degree. Astrophys. J. 565, 344–358 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Womack, M., Ziurys, L. M. & Wyckoff, S. Estimates of N2 abundances in dense molecular clouds. Astrophys. J. 393, 188–192 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Bockelée-Morvan, D. et al. New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astron. Astrophys. 353, 1101–1114 (2000)

    ADS  Google Scholar 

  20. Wyckoff, S., Tegler, S. C. & Engel, L. Nitrogen abundance in comet Halley. Astrophys. J. 367, 641–648 (1991)

    Article  ADS  Google Scholar 

  21. Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A. & Tielens, A. G. G. M. Interstellar ice: the Infrared Space Observatory legacy. Astrophys. J. Suppl. 151, 35–73 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Terzieva, R. & Herbst, E. The possibility of nitrogen isotopic fractionation in interstellar clouds. Mon. Not. R. Astron. Soc. 317, 563–568 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Knauth, D. C., Andersson, B.-G., McCandliss, S. R. & Warren Moos, H. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations. Nature 429, 636–638 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Caselli, P., Myers, P. C. & Thaddeus, P. Radio-astronomical spectroscopy of the hyperfine structure of N2H+. Astrophys. J. Lett. 455, L77–L80 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Keto, E., Rybicki, G. B., Bergin, E. A. & Plume, R. Radiative transfer and starless cores. Astrophys. J. 613, 355–373 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation. S.M. is grateful to E. Herbst for discussions about the N2 formation reaction rates. S.M. also thanks E. Keto for discussions about the radiative transfer of N2H+ hyperfine structure lines. Author contributions S.M. and E.A.B. performed the chemical and radiative transfer modelling presented in this paper. S.M. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maret.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Discussion

This discussion presents the chemical modeling performed in the paper into more details. It explains the time dependence of this model. It also describes the chains of reactions that lead to the formation of molecular nitrogen in the gas phase, and explain how a low oxygen abundance (with respect to current model predictions) could explain the elemental nitrogen deficiency observed in comets. Finally, the results of the present paper are compared with earlier studies. (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maret, S., Bergin, E. & Lada, C. A low fraction of nitrogen in molecular form in a dark cloud. Nature 442, 425–427 (2006). https://doi.org/10.1038/nature04919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04919

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing