Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters


Surfactant templating is a method that has successfully been used to produce nanoporous inorganic structures from a wide range of oxide-based material1,2,3,4,5. Co-assembly of inorganic precursor molecules with amphiphilic organic molecules is followed first by inorganic condensation to produce rigid amorphous frameworks and then, by template removal, to produce mesoporous solids. A range of periodic surfactant/semiconductor and surfactant/metal composites have also been produced by similar methods6,7,8,9,10,11, but for virtually all the non-oxide semiconducting phases, the surfactant unfortunately cannot be removed to generate porous materials. Here we show that it is possible to use surfactant-driven self-organization of soluble Zintl clusters to produce periodic, nanoporous versions of classic semiconductors such as amorphous Ge or Ge/Si alloys. Specifically, we use derivatives of the anionic Ge94- cluster12,13,14, a compound whose use in the synthesis of nanoscale materials is established15. Moreover, because of the small size, high surface area, and flexible chemistry of these materials, we can tune optical properties in these nanoporous semiconductors through quantum confinement16,17, by adsorption of surface species, or by altering the elemental composition of the inorganic framework. Because the semiconductor surface is exposed and accessible in these materials, they have the potential to interact with a range of species in ways that could eventually lead to new types of sensors or other novel nanostructured devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM and X-ray diffraction on hexagonal Ge.
Figure 2: EXAFS data on template Ge materials.
Figure 3: Surface area and optical characterization of nanoporous Ge.

Similar content being viewed by others


  1. Kresge, C. T. et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn Engl. 38, 56–77 (1999)

    Article  CAS  Google Scholar 

  3. Yang, P. et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Crepaldi, E. L. et al. Controlled formation of highly organized mesoporous titania thin films; from mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc. 125, 9770–9786 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Grosso, D. et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3, 787–792 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Attard, G. S. et al. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278, 838–840 (1997)

    Article  ADS  CAS  Google Scholar 

  8. MacLachlan, M. J., Coombs, N. & Ozin, G. A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4- clusters. Nature 397, 681–684 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Trikalitis, P. N., Rangan, K. K. & Kanatzidis, M. G. Platinum chalcogenido MCM-41 analogues. High hexagonal order in mesostructured semiconductors based on Pt2+ and [Ge4Q10]4- (Q = S, Se) and [Sn4Se10]4- adamantane clusters. J. Am. Chem. Soc. 124, 2604–2613 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Trikalitis, P. N. et al. Varied pore organization in mesostructured semiconductors based on the [SnSe4]4- anion. Nature 410, 671–675 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Korlann, S. D. et al. Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor. J. Am. Chem. Soc. 127, 12516–12527 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Belin, C. H. E., Corbett, J. D. & Cisar, A. Homopolyatomic anions and configurational questions. Synthesis and structure of the nonagermanide(2 - ) and nonagermanide(4 - ) ions, Ge92- and Ge94-. J. Am. Chem. Soc. 99, 7163–7169 (1977)

    Article  CAS  Google Scholar 

  13. Xu, L. & Sevov, S. C. Oxidative coupling of deltahedral (Ge9)4- Zintl ions. J. Am. Chem. Soc. 121, 9245–9246 (1999)

    Article  CAS  Google Scholar 

  14. Downie, C., Tang, Z. & Guloy, A. M. An unprecedented 1∞[Ge9]2- polymer: A link between molecular Zintl clusters and solid-state phases. Angew. Chem. Int. Edn Engl. 39, 337–340 (2000)

    Article  CAS  Google Scholar 

  15. Taylor, B. R. et al. Solution synthesis of germanium nanocrystals demonstrating quantum confinement. Chem. Mater. 10, 22–24 (1998)

    Article  CAS  Google Scholar 

  16. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodispersed CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  CAS  Google Scholar 

  17. Guzelian, A. A. et al. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212–7219 (1996)

    Article  CAS  Google Scholar 

  18. Evans, D. F. & Miller, D. D. A reappraisal of the role of water in promoting amphiphilic assembly and structure. In Water Science Reviews: Hydration Phenomena in Colloidal Systems (ed. Franks, F.) Vol. 4, 1–39 (Cambridge Univ. Press, Cambridge, 1989)

    Google Scholar 

  19. Israelachvili, J. N. Intermolecular and Surface Forces 2nd edn (Academic, London, 1992)

    Google Scholar 

  20. Ankudinov, A. L. et al. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Djordjevic, B. R. & Thorpe, M. F. The bulk modulus of covalent random networks. J. Phys. Condens. Matter 9, 1983–1994 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Dalba, G. et al. M. Local disorder in crystalline and amophous-germanium. Phys. Rev. B 52, 11034–11043 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Rivillon, S., Chabal, Y. J., Fabrice, A. & Anotonie, K. Hydrogen passivation of germanium (100) surface using wet chemical prepeartion. App. Phys. Lett. 87, 253101–253103 (2005)

    Article  ADS  Google Scholar 

  24. Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area, and Porosity 2nd edn (Academic, London, 1982)

    Google Scholar 

  25. Broekhoff, J. C. P. & van Beek, W. P. Scanning studies on capillary condensation and evaporation of nitrogen 2. Analysis of ascending and descending scanning curves within B-type hysteresis loops. J. Chem. Soc. Faraday Trans. I 75, 42–55 (1979)

    Article  CAS  Google Scholar 

  26. Vogg, G., Brandt, M. S. & Stutzmann, M. Polygermyne—A prototype system for layered germanium polymers. Adv. Mater. 12, 1278–1281 (2000)

    Article  CAS  Google Scholar 

  27. Nakata, H. et al. Luminescence and absorption edge of a-Ge:H well layers in a-Si:H/a-Ge:H multilayers. J. Non-Cryst. Solids 266, 1067–1071 (2000)

    Article  ADS  Google Scholar 

  28. Miyazaki, S. et al. Photoluminescence from anodized and thermally oxidized porous germanium. Thin Solid Films 255, 99–102 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Zhang, J. Z. & Ellis, A. B. Adsorption of TCNQ derivatives onto the surface of cadmium selenide single crystals: quenching of semiconductor photoluminescence by a family of strong π-acids. J. Phys. Chem. 96, 2700–2704 (1992)

    Article  CAS  Google Scholar 

  30. Zakrzewski, V. G., Dolgounitcheva, O. & Ortiz, J. V. Electron binding energies of TCNQ and TCNE. J. Chem. Phys. 105, 5872–5877 (1996)

    Article  ADS  CAS  Google Scholar 

Download references


This work was supported by the National Science Foundation and by the Office of Naval Research. This manuscript includes data collected at the Stanford Synchrotron Radiation Laboratory, which is operated by the Department of Energy, Office of Basic Energy Sciences, with additional support from SSRL-SMB. SHT is an Alfred P. Sloan Foundation Research Fellow.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sarah H. Tolbert.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–4, showing more detail on X-ray photoelectron spectroscopy, solution phase oxidation, and nitrogen porosimetry for surfactant templated nanoporous germanium (PDF 177 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, D., Riley, A., Cadby, A. et al. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters. Nature 441, 1126–1130 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing