Abstract
Surfactant templating is a method that has successfully been used to produce nanoporous inorganic structures from a wide range of oxide-based material1,2,3,4,5. Co-assembly of inorganic precursor molecules with amphiphilic organic molecules is followed first by inorganic condensation to produce rigid amorphous frameworks and then, by template removal, to produce mesoporous solids. A range of periodic surfactant/semiconductor and surfactant/metal composites have also been produced by similar methods6,7,8,9,10,11, but for virtually all the non-oxide semiconducting phases, the surfactant unfortunately cannot be removed to generate porous materials. Here we show that it is possible to use surfactant-driven self-organization of soluble Zintl clusters to produce periodic, nanoporous versions of classic semiconductors such as amorphous Ge or Ge/Si alloys. Specifically, we use derivatives of the anionic Ge94- cluster12,13,14, a compound whose use in the synthesis of nanoscale materials is established15. Moreover, because of the small size, high surface area, and flexible chemistry of these materials, we can tune optical properties in these nanoporous semiconductors through quantum confinement16,17, by adsorption of surface species, or by altering the elemental composition of the inorganic framework. Because the semiconductor surface is exposed and accessible in these materials, they have the potential to interact with a range of species in ways that could eventually lead to new types of sensors or other novel nanostructured devices.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Kresge, C. T. et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)
Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn Engl. 38, 56–77 (1999)
Yang, P. et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998)
Crepaldi, E. L. et al. Controlled formation of highly organized mesoporous titania thin films; from mesostructured hybrids to mesoporous nanoanatase TiO2. J. Am. Chem. Soc. 125, 9770–9786 (2003)
Grosso, D. et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3, 787–792 (2004)
Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996)
Attard, G. S. et al. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278, 838–840 (1997)
MacLachlan, M. J., Coombs, N. & Ozin, G. A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4S10)4- clusters. Nature 397, 681–684 (1999)
Trikalitis, P. N., Rangan, K. K. & Kanatzidis, M. G. Platinum chalcogenido MCM-41 analogues. High hexagonal order in mesostructured semiconductors based on Pt2+ and [Ge4Q10]4- (Q = S, Se) and [Sn4Se10]4- adamantane clusters. J. Am. Chem. Soc. 124, 2604–2613 (2002)
Trikalitis, P. N. et al. Varied pore organization in mesostructured semiconductors based on the [SnSe4]4- anion. Nature 410, 671–675 (2001)
Korlann, S. D. et al. Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor. J. Am. Chem. Soc. 127, 12516–12527 (2005)
Belin, C. H. E., Corbett, J. D. & Cisar, A. Homopolyatomic anions and configurational questions. Synthesis and structure of the nonagermanide(2 - ) and nonagermanide(4 - ) ions, Ge92- and Ge94-. J. Am. Chem. Soc. 99, 7163–7169 (1977)
Xu, L. & Sevov, S. C. Oxidative coupling of deltahedral (Ge9)4- Zintl ions. J. Am. Chem. Soc. 121, 9245–9246 (1999)
Downie, C., Tang, Z. & Guloy, A. M. An unprecedented 1∞[Ge9]2- polymer: A link between molecular Zintl clusters and solid-state phases. Angew. Chem. Int. Edn Engl. 39, 337–340 (2000)
Taylor, B. R. et al. Solution synthesis of germanium nanocrystals demonstrating quantum confinement. Chem. Mater. 10, 22–24 (1998)
Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodispersed CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)
Guzelian, A. A. et al. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212–7219 (1996)
Evans, D. F. & Miller, D. D. A reappraisal of the role of water in promoting amphiphilic assembly and structure. In Water Science Reviews: Hydration Phenomena in Colloidal Systems (ed. Franks, F.) Vol. 4, 1–39 (Cambridge Univ. Press, Cambridge, 1989)
Israelachvili, J. N. Intermolecular and Surface Forces 2nd edn (Academic, London, 1992)
Ankudinov, A. L. et al. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998)
Djordjevic, B. R. & Thorpe, M. F. The bulk modulus of covalent random networks. J. Phys. Condens. Matter 9, 1983–1994 (1997)
Dalba, G. et al. M. Local disorder in crystalline and amophous-germanium. Phys. Rev. B 52, 11034–11043 (1995)
Rivillon, S., Chabal, Y. J., Fabrice, A. & Anotonie, K. Hydrogen passivation of germanium (100) surface using wet chemical prepeartion. App. Phys. Lett. 87, 253101–253103 (2005)
Gregg, S. J. & Sing, K. S. W. Adsorption, Surface Area, and Porosity 2nd edn (Academic, London, 1982)
Broekhoff, J. C. P. & van Beek, W. P. Scanning studies on capillary condensation and evaporation of nitrogen 2. Analysis of ascending and descending scanning curves within B-type hysteresis loops. J. Chem. Soc. Faraday Trans. I 75, 42–55 (1979)
Vogg, G., Brandt, M. S. & Stutzmann, M. Polygermyne—A prototype system for layered germanium polymers. Adv. Mater. 12, 1278–1281 (2000)
Nakata, H. et al. Luminescence and absorption edge of a-Ge:H well layers in a-Si:H/a-Ge:H multilayers. J. Non-Cryst. Solids 266, 1067–1071 (2000)
Miyazaki, S. et al. Photoluminescence from anodized and thermally oxidized porous germanium. Thin Solid Films 255, 99–102 (1995)
Zhang, J. Z. & Ellis, A. B. Adsorption of TCNQ derivatives onto the surface of cadmium selenide single crystals: quenching of semiconductor photoluminescence by a family of strong π-acids. J. Phys. Chem. 96, 2700–2704 (1992)
Zakrzewski, V. G., Dolgounitcheva, O. & Ortiz, J. V. Electron binding energies of TCNQ and TCNE. J. Chem. Phys. 105, 5872–5877 (1996)
Acknowledgements
This work was supported by the National Science Foundation and by the Office of Naval Research. This manuscript includes data collected at the Stanford Synchrotron Radiation Laboratory, which is operated by the Department of Energy, Office of Basic Energy Sciences, with additional support from SSRL-SMB. SHT is an Alfred P. Sloan Foundation Research Fellow.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1–4, showing more detail on X-ray photoelectron spectroscopy, solution phase oxidation, and nitrogen porosimetry for surfactant templated nanoporous germanium (PDF 177 kb)
Rights and permissions
About this article
Cite this article
Sun, D., Riley, A., Cadby, A. et al. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters. Nature 441, 1126–1130 (2006). https://doi.org/10.1038/nature04891
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature04891
This article is cited by
-
Nanostructured germanium synthesized by high-pressure chemical vapor deposition in mesoporous silica templates
Journal of Materials Science: Materials in Electronics (2023)
-
Dramatic Changes in Thermoelectric Power of Germanium under Pressure: Printing n–p Junctions by Applied Stress
Scientific Reports (2017)
-
Effect of ion beam parameters on engineering of nanoscale voids and their stability under post-growth annealing
Applied Physics A (2016)
-
Atomic Composition, Structure, and Vibrational Spectra of Germanium Clusters Terminated by Iodine
Journal of Cluster Science (2015)
-
Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes
Nano Research (2015)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.