Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural asymmetry and the stability of diverse food webs


Untangling the influence of human activities on food-web stability and persistence is complex given the large numbers of species and overwhelming number of interactions within ecosystems. Although biodiversity has been associated with stability, the actual structures and processes that confer stability to diverse food webs remain largely unknown. Here we show that real food webs are structured such that top predators act as couplers of distinct energy channels that differ in both productivity and turnover rate. Our theoretical analysis shows that coupled fast and slow channels convey both local and non-local stability to food webs. Alarmingly, the same human actions that have been implicated in the loss of biodiversity also directly erode the very structures and processes that we show to confer stability on food webs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Food webs are structured such that top predators couple distinct energy channels.
Figure 2: Differing productivities and turnover rates between coupled energy channels result in increased local food-web stability and decreased consumer population synchrony.
Figure 3: Coupled fast and slow energy channels allow for non-local food-web stability.


  1. May, R. M. Stability in multi-species community models. Math. Biosci. 12, 59–79 (1971)

    Article  MathSciNet  Google Scholar 

  2. May, R. M. Stability and complexity in model ecosystems (Princeton Univ. Press, Princeton, 1973)

  3. Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981)

    Article  ADS  Google Scholar 

  4. de Ruiter, P. C., Neutel, A. M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Neutel, A. M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. McCann, K. S., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food web structure. Nature 426, 282–285 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Pimm, S. L. The structure of food webs. Theor. Popul. Biol. 16, 144–158 (1979)

    Article  CAS  PubMed  Google Scholar 

  9. Pimm, S. L. & Lawton, J. H. Are food webs compartmented? J. Anim. Ecol. 49, 879–898 (1980)

    Article  Google Scholar 

  10. Ives, A. R. & Hughes, J. B. General relationships between species diversity and stability in competitive systems. Am. Nat. 159, 388–395 (2002)

    Article  PubMed  Google Scholar 

  11. Post, D. M., Conners, M. E. & Goldberg, D. S. Prey preference by a top predator and the stability of linked food chains. Ecology 81, 8–14 (2000)

    Article  Google Scholar 

  12. Teng, J. & McCann, K. S. Dynamics of compartmented and reticulate food webs. Am. Nat. 164, 86–100 (2004)

    Article  Google Scholar 

  13. Polis, G. A. & Strong, D. Food web complexity and community dynamics. Am. Nat. 147, 813–846 (1996)

    Article  Google Scholar 

  14. Polis, G. A. & Holt, R. D. Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol. Evol. 7, 151–155 (1992)

    Article  CAS  PubMed  Google Scholar 

  15. Paine, R. T. Food-web analysis through field measurement of per capita interaction strength. Nature 355, 73–75 (1992)

    Article  ADS  Google Scholar 

  16. Wootton, J. T. Estimates and test of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecol. Monogr. 67, 45–64 (1997)

    Article  Google Scholar 

  17. Goldwasser, L. & Roughgarden, J. Construction and analysis of a large Caribbean food web. Ecology 74, 1216–1233 (1993)

    Article  Google Scholar 

  18. Rafaeli, D. G. & Hall, S. J. in Food Webs: Integration of Patterns & Dynamics (eds Polis, G. A. & Winemiller, K. O.) 185–191 (Chapman & Hall, New York, 1996)

    Book  Google Scholar 

  19. Winemiller, K. O. Spatial and temporal variation in tropical fish trophic networks. Ecol. Monogr. 60, 331–367 (1990)

    Article  Google Scholar 

  20. Polis, G. A. Complex trophic interactions in deserts: an empirical critique of food web theory. Am. Nat. 138, 123–155 (1991)

    Article  Google Scholar 

  21. Moore, J. C. & Hunt, H. W. Resource compartmentation and the stability of real ecosystems. Nature 333, 261–263 (1988)

    Article  ADS  Google Scholar 

  22. Moore, J. C., Walter, D. W. & Hunt, H. W. Habitat compartmentation and environmental correlates to food chain length. Science 243, 238–240 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Moore, J. C., de Ruiter, P. C. & Hunt, H. W. The influence of ecosystem productivity on food web stability. Science 261, 906–908 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Cohen, J. E. Food Webs and Niche Space (Princeton Univ. Press, Princeton, 1978)

    Google Scholar 

  25. Ulanowicz, R. E. & Baird, D. Nutrient controls on ecosystem dynamics: the Chesapeake mesohaline community. J. Mar. Syst. 19, 159–172 (1999)

    Article  ADS  Google Scholar 

  26. Baird, D. & Ulanowicz, R. E. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 59, 329–364 (1989)

    Article  Google Scholar 

  27. Neira, S. & Arancibia, H. Trophic interactions and community structure in the upwelling system off Central Chile (33–39 degrees S). J. Exp. Mar. Biol. Ecol. 312, 349–366 (2004)

    Article  Google Scholar 

  28. Sanchez, F. & Olaso, I. Effects of fisheries on the Cantabrian Sea shelf ecosystem. Ecol. Model. 172, 151–174 (2004)

    Article  Google Scholar 

  29. Trites, A. W., Livingston, P. A., Vasconcellos, M. C., Mackinson, S., Springer, A. M. & Pauly, D. Ecosystem change and the decline of marine mammals in the Eastern Bering Sea: testing the ecosystem shift and commercial whaling hypotheses. Fisheries Centre Research Reports 7(1) (1999)

  30. Hunt, H. W. et al. The detrital food web in a shortgrass prairie. Biol. Fertil. Soils 3, 57–68 (1987)

    Google Scholar 

  31. de Ruiter, P. C., Neutel, A. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Doles, J. A Survey of Soil Biota in the Arctic Tundra and their Role in Mediating Terrestrial Nutrient Cycling. Masters thesis, Univ. of Northern Colorado (2000)

    Google Scholar 

  33. Berg, M. P. Decomposition, Nutrient Flow and Food Web Dynamics in a Stratified Pine Forest Soil. Doctoral thesis, Vrije Universiteit, Amsterdam (1987)

    Google Scholar 

  34. Vander Zanden, M. J. & Vadeboncoeur, Y. Fishes as integrators of benthic and pelagic food chains in lakes. Ecology 83, 2152–2161 (2002)

    Article  Google Scholar 

  35. McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 5, 1455–1474 (1999)

    Google Scholar 

  37. MacArthur, R. H. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955)

    Article  Google Scholar 

  38. McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Holt, R. D. Optimal foraging and the form of the predator isocline. Am. Nat. 122, 521–541 (1983)

    Article  Google Scholar 

  40. Křivan, V. Optimal foraging and predator–prey dynamics. Theor. Popul. Biol. 49, 265–290 (1996)

    Article  PubMed  Google Scholar 

  41. Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1925 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references


We thank A. de Bruyn and J. Rasmussen for helpful comments. This work was supported by an NSERC grant to K.M., and by grants from the US National Science Foundation and the National Center for Ecological Analysis and Synthesis to J.C.M.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Neil Rooney.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figure 1a details aquatic food webs, following Figure 1. Supplementary Figure 1b details terrestrial food webs, following Figure 1. Supplementary Figure 2 details theoretical food web configuration and equations. (PDF 477 kb)

Supplementary Tables

Supplementary Table 1 details production and biomass values for aquatic and terrestrial food webs after Table 1. Supplementary Table 2 details parameter definitions and values for the theoretical model. Supplementary Table 3 details real food web examples of human activities eroding food web structures. Supplementary Table 4a details taxon identification by number for Figure 1a and Supplementary Figure 1a. Supplementary Table 4b details taxon identification by number for Figure 1b and Supplementary Figure 1b. (PDF 579 kb)

Supplementary Methods

Protocol for the calculation of trophic position and percent basal resource for all food webs (PDF 56 kb)

Supplementary Notes

Full references for citations in Supplementary Table 3 (PDF 133 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rooney, N., McCann, K., Gellner, G. et al. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing