Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enzymatic activation of voltage-gated potassium channels

Abstract

Voltage-gated ion channels in excitable nerve, muscle, and endocrine cells generate electric signals in the form of action potentials1. However, they are also present in non-excitable eukaryotic cells and prokaryotes, which raises the question of whether voltage-gated channels might be activated by means other than changing the voltage difference between the solutions separated by the plasma membrane. The search for so-called voltage-gated channel activators is motivated in part by the growing importance of such agents in clinical pharmacology. Here we report the apparent activation of voltage-gated K+ (Kv) channels by a sphingomyelinase.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Identification of Kv channel-stimulating activity.
Figure 2: Effects of pH, histidine mutations and Mg 2+ on SMase D activity.
Figure 3: Effect of SMase D on the G V curve of Kv2.1-Δ7 channels.
Figure 4: Effects of SMase D on other K + channels.

References

  1. Hille, B. Ion Channels of Excitable Membranes 3rd edn (Sinauer, Sunderland, Massachusetts, 2001)

    Google Scholar 

  2. Frech, G. C., VanDongen, A. M., Schuster, G., Brown, A. M. & Joho, R. H. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340, 642–645 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Aggarwal, S. K. Analysis of the Voltage-sensor in a Voltage-activated Potassium Channel. PhD thesis, Harvard Univ. (1996)

    Google Scholar 

  4. Ramos-Cerrillo, B. et al. Genetic and enzymatic characterization of sphingomyelinase D isoforms from the North American fiddleback spiders Loxosceles boneti and Loxosceles reclusa. Toxicon 44, 507–514 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Kurpiewski, G., Forrester, L. J., Barrett, J. T. & Campbell, B. J. Platelet aggregation and sphingomyelinase D activity of a purified toxin from the venom of Loxosceles reclusa. Biochim. Biophys. Acta 678, 467–476 (1981)

    Article  CAS  PubMed  Google Scholar 

  6. Rees, R. S., Nanney, L. B., Yates, R. A. & King, L. E. Jr. Interaction of brown recluse spider venom on cell membranes: the inciting mechanism? J. Invest. Dermatol. 83, 270–275 (1984)

    Article  CAS  PubMed  Google Scholar 

  7. Soucek, A., Michalec, C. & Souckova, A. Identification and characterization of a new enzyme of the group ‘phospholipase D’ isolated from Corynebacterium ovis. Biochim. Biophys. Acta 227, 116–128 (1971)

    Article  CAS  PubMed  Google Scholar 

  8. Barksdale, L., Linder, R., Sulea, I. T. & Pollice, M. Phospholipase D activity of Corynebacterium pseudotuberculosis (Corynebacterium ovis) and Corynebacterium ulcerans, a distinctive marker within the genus Corynebacterium. J. Clin. Microbiol. 13, 335–343 (1981)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernheimer, A. W., Campbell, B. J. & Forrester, L. J. Comparative toxinology of Loxosceles reclusa and Corynebacterium pseudotuberculosis. Science 228, 590–591 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Lee, S. & Lynch, K. R. Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochem. J. 391, 317–323 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Andrade, S. A. et al. Conformational changes of Loxosceles venom sphingomyelinases monitored by circular dichroism. Biochem. Biophys. Res. Commun. 327, 117–123 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. de Andrade, S. A., Murakami, M. T., Cavalcante, D. P., Arni, R. K. & Tambourgi, D. V. Kinetic and mechanistic characterization of the sphingomyelinases D from Loxosceles intermedia spider venom. Toxicon 47, 380–386 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. van Meeteren, L. A. et al. Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine. J. Biol. Chem. 279, 10833–10836 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Hilgemann, D. W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE 2001, RE19 (2001)

    CAS  PubMed  Google Scholar 

  15. Murakami, M. T., Fernandes-Pedrosa, M. F., Tambourgi, D. V. & Arni, R. K. Structural basis for metal ion coordination and the catalytic mechanism of sphingomyelinases D. J. Biol. Chem. 280, 13658–13664 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Bell, J. E. & Miller, C. Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. Biophys. J. 45, 279–287 (1984)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moczydlowski, E., Alvarez, O., Vergara, C. & Latorre, R. Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers. J. Membr. Biol. 83, 273–282 (1985)

    Article  CAS  PubMed  Google Scholar 

  18. Valiyaveetil, F. I., Zhou, Y. & MacKinnon, R. Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 41, 10771–10777 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Swartz, K. J. & MacKinnon, R. An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 15, 941–949 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. Phillips, L. R. et al. Voltage-sensor activation with a tarantula toxin as cargo. Nature 436, 857–860 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A. & MacKinnon, R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33, 6834–6839 (1994)

    Article  CAS  PubMed  Google Scholar 

  24. Frankenhaeuser, B. & Hodgkin, A. L. The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244 (1957)

    Article  CAS  Google Scholar 

  25. Robertson, G. A., Warmke, J. M. & Ganetzky, B. Potassium currents expressed from Drosophila and mouse eag cDNAs in Xenopus oocytes. Neuropharmacology 35, 841–850 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. & Salkoff, L. mSlo, a complex mouse gene encoding ‘maxi’ calcium-activated potassium channels. Science 261, 221–224 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Perozo, E., MacKinnon, R., Bezanilla, F. & Stefani, E. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11, 353–358 (1993)

    Article  CAS  PubMed  Google Scholar 

  29. Stith, B. J. et al. Quantification of major classes of Xenopus phospholipids by high performance liquid chromatography with evaporative light scattering detection. J. Lipid Res. 41, 1448–1454 (2000)

    ADS  CAS  PubMed  Google Scholar 

  30. Lu, Z., Klem, A. M. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Lynch (University of Virginia) for sharing the cDNA clone of Lr2 isoform of SMase D; R. Joho and K. Swartz for Kv2.1 cDNA; G. Robertson and B. Ganetzky for mEAG cDNA; L. Salkoff and F. Horrigan for mSlo cDNA; K. Swartz for Shaker-IR cDNA in the pGEM-HESS vector and the HaTx sample; C.-X. Yuan for LC–MS/MS sequencing; J. R. Martinez-Francois for chemical structure drawing; R. MacKinnon for comments; and P. De Weer for review and discussion of our manuscript. This study was supported by a grant from the National Institute of General Medical Sciences to Z.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Lu.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

LCMS/MS-identified peptide sequences match those of Lr1 and Lr2 isoforms of SMase D. (JPG 62 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramu, Y., Xu, Y. & Lu, Z. Enzymatic activation of voltage-gated potassium channels. Nature 442, 696–699 (2006). https://doi.org/10.1038/nature04880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04880

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing