Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ATM stabilizes DNA double-strand-break complexes during V(D)J recombination

Abstract

The ATM (ataxia-telangiectasia mutated) protein kinase mediates early cellular responses to DNA double-strand breaks (DSBs) generated during metabolic processes or by DNA-damaging agents1,2,3,4. ATM deficiency leads to ataxia-telangiectasia, a disease marked by lymphopenia, genomic instability and an increased predisposition to lymphoid malignancies with chromosomal translocations involving lymphocyte antigen receptor loci5,6. ATM activates cell-cycle checkpoints and can induce apoptosis in response to DNA DSBs1,2,3,4. However, defects in these pathways of the DNA damage response cannot fully account for the phenotypes of ATM deficiency. Here, we show that ATM also functions directly in the repair of chromosomal DNA DSBs by maintaining DNA ends in repair complexes generated during lymphocyte antigen receptor gene assembly. When coupled with the cell-cycle checkpoint and pro-apoptotic activities of ATM, these findings provide a molecular explanation for the increase in lymphoid tumours with translocations involving antigen receptor loci associated with ataxia-telangiectasia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATM-deficient pre-B cells exhibit defects in V(D)J recombination.
Figure 2: Hybrid join formation is not increased during rearrangement by deletion.
Figure 3: Coding ends are lost from post-cleavage complexes in ATM-deficient cells.
Figure 4: Increased aberrant resolution of coding ends, but not signal ends, in ATM-deficient cells.

Similar content being viewed by others

References

  1. Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol. 1, 179–186 (2000)

    Article  CAS  Google Scholar 

  2. Pandita, T. K. A multifaceted role for ATM in genome maintenance. Expert Rev. Mol. Med. 5, 1–21 (2003)

    Article  PubMed  Google Scholar 

  3. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003)

    Article  CAS  Google Scholar 

  4. Durocher, D. & Jackson, S. P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr. Opin. Cell Biol. 13, 225–231 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Lavin, M. F. & Shiloh, Y. The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol. 15, 177–202 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, A. M., Metcalfe, J. A., Thick, J. & Mak, Y. F. Leukemia and lymphoma in ataxia telangiectasia. Blood 87, 423–438 (1996)

    CAS  PubMed  Google Scholar 

  7. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Fugmann, S. D., Lee, A. I., Shockett, P. E., Villey, I. J. & Schatz, D. G. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Oettinger, M. A. V(D)J recombination: on the cutting edge. Curr. Opin. Cell Biol. 11, 325–329 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. Gellert, M. V(D)J recombination: rag proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Bassing, C. H. & Alt, F. W. The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst.) 3, 781–796 (2004)

    Article  CAS  Google Scholar 

  12. Matei, I. R., Guidos, C. J. & Danska, J. S. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol. Rev. 209, 142–158 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Perkins, E. J. et al. Sensing of intermediates in V(D)J recombination by ATM. Genes Dev. 16, 159–164 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liao, M. J. & Van Dyke, T. Critical role for Atm in suppressing V(D)J recombination-driven thymic lymphoma. Genes Dev. 13, 1246–1250 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petiniot, L. K. et al. Recombinase-activating gene (RAG) 2-mediated V(D)J recombination is not essential for tumorigenesis in Atm-deficient mice. Proc. Natl Acad. Sci. USA 97, 6664–6669 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hirao, A. et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell. Biol. 22, 6521–6532 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muljo, S. A. & Schlissel, M. S. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nature Immunol. 4, 31–37 (2003)

    Article  CAS  Google Scholar 

  19. Liang, H. E. et al. The “dispensable” portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity 17, 639–651 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Lewis, S. M., Hesse, J. E., Mizuuchi, K. & Gellert, M. Novel strand exchanges in V(D)J recombination. Cell 55, 1099–1107 (1988)

    Article  CAS  PubMed  Google Scholar 

  21. Morzycka-Wroblewska, E., Lee, F. E. & Desiderio, S. V. Unusual immunoglobulin gene rearrangement leads to replacement of recombinational signal sequences. Science 242, 261–263 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Roth, D. B., Menetski, J. P., Nakajima, P. B., Bosma, M. J. & Gellert, M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70, 983–991 (1992)

    Article  CAS  PubMed  Google Scholar 

  24. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Agrawal, A. & Schatz, D. G. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89, 43–53 (1997)

    Article  CAS  PubMed  Google Scholar 

  26. Hiom, K. & Gellert, M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1, 1011–1019 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Sekiguchi, J. A., Whitlow, S. & Alt, F. W. Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs. Mol. Cell 8, 1383–1390 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Mills, K. D., Ferguson, D. O. & Alt, F. W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Schlissel for pMX-RSS-GFP/IRES-hCD4. STI571 was provided by Novartis Pharmaceuticals and KU-55933 was provided by G. Smith at KuDOS Pharmaceuticals. We thank H. Virgin, K. Murphy and M. Krangel for critical review of the manuscript. This work is supported in part by grants from the National Institutes of Health (to B.P.S. and T.K.P.) and the Department of Army (T.K.P.). C.H.B. is a Pew Scholar in the Biomedical Sciences and a recipient of a Pilot Project Award from the American Cancer Society. B.P.S. is a recipient of a Research Scholar Award from the American Cancer Society. C.-Y.H. is supported by a post-doctoral training grant and A.L.B. a pre-doctoral training grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry P. Sleckman.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–19, Supplementary Methods and Supplementary Notes. The Supplementary Figures show the setup of the experimental system, data from additional cell lines, and controls for Figures 1-4. (PDF 2604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredemeyer, A., Sharma, G., Huang, CY. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470 (2006). https://doi.org/10.1038/nature04866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04866

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing