Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resonance in the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4-δ

Abstract

In conventional superconductors, the interaction that pairs the electrons to form the superconducting state is mediated by lattice vibrations1 (phonons). In high-transition-temperature (high-Tc) copper oxides, it is generally believed that magnetic excitations might play a fundamental role in the superconducting mechanism because superconductivity occurs when mobile ‘electrons’ or ‘holes’ are doped into the antiferromagnetic parent compounds2. Indeed, a sharp magnetic excitation termed ‘resonance’ has been observed by neutron scattering in a number of hole-doped materials3,4,5,6,7,8,9,10,11. The resonance is intimately related to superconductivity12, and its interaction with charged quasi-particles observed by photoemission13,14, optical conductivity15, and tunnelling16 suggests that it might play a part similar to that of phonons in conventional superconductors. The relevance of the resonance to high-Tc superconductivity, however, has been in doubt because so far it has been found only in hole-doped materials17. Here we report the discovery of the resonance in electron-doped superconducting Pr0.88LaCe0.12CuO4-δ (Tc = 24 K). We find that the resonance energy (Er) is proportional to Tc via Er ≈ 5.8kBTc for all high-Tc superconductors irrespective of electron- or hole-doping. Our results demonstrate that the resonance is a fundamental property of the superconducting copper oxides and therefore must be essential in the mechanism of superconductivity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Magnetic susceptibility and a summary of neutron-scattering results.
Figure 2: The wavevector, energy and temperature dependence of the magnetic scattering around Q = (1/2, 1/2, 0) for 0.5 ≤ ω ≤ 4.5 meV.
Figure 3: The wavevector and energy dependence of the scattering around Q = (1/2, 1/2, 0) below and above Tc.
Figure 4: The wavevector, energy and temperature dependence of the scattering around Q = (1/2, 1/2, 0).

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rossat-Mignod, J. et al. Neutron scattering study of the YBa2Cu3O6+x system. Physica C 185, 86–92 (1991)

    Article  ADS  Google Scholar 

  4. Mook, H. A. et al. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7 . Phys. Rev. Lett. 70, 3490–3493 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Fong, H. F. et al. Spin susceptibility in underdoped YBa2Cu3O6+x . Phys. Rev. B 61, 14773–14786 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Dai, P., Mook, H. A., Hunt, R. D. & Doğan, F. Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+x . Phys. Rev. B 63, 054525 (2001)

    Article  ADS  Google Scholar 

  7. Stock, C. et al. Dynamic stripes and resonance in the superconducting and normal phases of YBa2Cu3O6.5 ortho-II superconductor. Phys. Rev. B 69, 014502 (2004)

    Article  ADS  Google Scholar 

  8. Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doğan, F. The structure of the high-energy spin excitations in a high-transition-temperature superconductor. Nature 429, 531–534 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Fong, H. F. et al. Neutron scattering from magnetic excitations in Bi2Sr2CaCu2O8+δ . Nature 398, 588–591 (1999)

    Article  ADS  CAS  Google Scholar 

  10. He, H. et al. Resonant spin excitations in a overdoped high temperature superconductor. Phys. Rev. Lett. 86, 1610–1613 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. He, H. et al. Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2CuO6+δ . Science 295, 1045–1047 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Dai, P. et al. The magnetic excitation spectrum and thermodynamics of high-Tc superconductors. Science 284, 1344–1347 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Norman, M. R. & Pepin, C. The electron nature of high temperature cuprate superconductors. Rep. Prog. Phys. 66, 1547–1610 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Basov, D. N. & Timusk, T. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721–779 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Zasadzinski, J. F. et al. Correlation of tunneling spectra in Bi2Sr2CaCu2O8+δ with the resonance spin excitation. Phys. Rev. Lett. 87, 067005 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Hwang, J., Timusk, T. & Gu, G. D. High-transition-temperature superconductivity in the absence of the mangetic-resonance mode. Nature 427, 714–717 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Arai, M. et al. Incommensurate spin dynamics of underdoped superconductor YBa2Cu3O6.7 . Phys. Rev. Lett. 83, 608–611 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Bourges, P. et al. The spin excitation spectrum in superconducting YBa2Cu3O6.85 . Science 288, 1234–1237 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Christensen, N. B. et al. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4 . Phys. Rev. Lett. 93, 147002 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Tranquada, J. M. Neutron scattering studies of antiferromagnetic correlations in cuprates. Preprint at http://arXiv.org/cond-mat/0512115 (2005).

  23. Dai, P. et al. Electronic inhomogeneity and competing phases in electron-doped superconducting Pr0.88LaCe0.12CuO4-δ . Phys. Rev. B 71, 100502(R) (2005)

    Article  ADS  Google Scholar 

  24. Kang, H. J. et al. Electronically competing phases and their magnetic field dependence in electron-doped nonsuperconducting and superconducting Pr0.88LaCe0.12CuO4-δ . Phys. Rev. B 71, 214512 (2005)

    Article  ADS  Google Scholar 

  25. Yamada, K. et al. Commensurate spin dynamics in the superconducting state of an electron-doped cuprate superconductor. Phys. Rev. Lett. 90, 137004 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Fujita, M. et al. Magnetic and superconducting phase diagram of electron-doped Pr1-xLaCexCuO4 . Phys. Rev. B 67, 014514 (2003)

    Article  ADS  Google Scholar 

  27. Boothroyd, A. T., Doyle, S. M., Paul, McK. D. & Osborn, R. Crystal-field excitations in Nd2CuO4, Pr2CuO4, and related n-type superconductors. Phys. Rev. B 45, 10075–10086 (1992)

    Article  ADS  CAS  Google Scholar 

  28. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5-xPdx (x = 1, 1.5). Phys. Rev. Lett. 75, 725–728 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Matsui, H. et al. Direct observation of a nonmonotonic d x2-y2-wave superconducting gap in the electron-doped high-Tc superconductor Pr0.89LaCe0.11CuO4 . Phys. Rev. Lett. 95, 017003 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Dagotto, H. Ding and S. Zhang for discussions. We also thank Y. Ando's group for teaching us how to grow high-quality single crystals of PLCCO. S.D.W. and S.L. are supported by the US National Science Foundation. S.C. is supported by the US DOE Division of Materials Science, Basic Energy Sciences. Oak Ridge National Laboratory is supported by the US DOE through UT/Battelle LLC. SPINS is supported by the US National Science Foundation through the Center for High Resolution Neutron Spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Dai.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion 1

This file contains Supplementary Notes and Supplementart Figure 1, showing model calculations for various CEF transitions. Arguments are presented ruling out the possibility of a CEF origin to the magnetic resonance mode we observe, and the CEF excitation influence can be regarded as background scattering underneath the spin fluctuations localized at Q=(0.5, 0.5, 0). (PDF 237 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, S., Dai, P., Li, S. et al. Resonance in the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4-δ. Nature 442, 59–62 (2006). https://doi.org/10.1038/nature04857

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04857

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing