Letter | Published:

Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas

Naturevolume 441pages11181121 (2006) | Download Citation



Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature1,2. Consequently, for the case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose–Einstein condensation, in contrast to the three-dimensional case. However, the two-dimensional system can form a ‘quasi-condensate’ and become superfluid below a finite critical temperature. The Berezinskii–Kosterlitz–Thouless (BKT) theory3,4 associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulation. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

  2. 2

    Hohenberg, P. C. Existence of long-range order in 1 and 2 dimensions. Phys. Rev. 158, 383–386 (1967)

  3. 3

    Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610–616 (1972)

  4. 4

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C 6, 1181–1203 (1973)

  5. 5

    Bishop, D. J. & Reppy, J. D. Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett. 40, 1727–1730 (1978)

  6. 6

    Resnick, D. J., Garland, J. C., Boyd, J. T., Shoemaker, S. & Newrock, R. S. Kosterlitz-Thouless transition in proximity-coupled superconducting arrays. Phys. Rev. Lett. 47, 1542–1545 (1981)

  7. 7

    Safonov, A. I., Vasilyev, S. A., Yasnikov, I. S., Lukashevich, I. I. & Jaakkola, S. Observation of quasicondensate in two-dimensional atomic hydrogen. Phys. Rev. Lett. 81, 4545–4548 (1998)

  8. 8

    Görlitz, A. et al. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402 (2001)

  9. 9

    Schweikhard, V., Coddington, I., Engels, P., Mogendorff, V. P. & Cornell, E. A. Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level. Phys. Rev. Lett. 92, 040404 (2004)

  10. 10

    Rychtarik, D., Engeser, B., Nägerl, H.-C. & Grimm, R. Two-dimensional Bose-Einstein condensate in an optical surface trap. Phys. Rev. Lett. 92, 173003 (2004)

  11. 11

    Smith, N. L., Heathcote, W. H., Hechenblaikner, G., Nugent, E. & Foot, C. J. Quasi-2D confinement of a BEC in a combined optical and magnetic potential. J. Phys. B 38, 223–235 (2005)

  12. 12

    Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001)

  13. 13

    Burger, S. et al. Quasi-2D Bose-Einstein condensation in an optical lattice. Europhys. Lett. 57, 1–6 (2002)

  14. 14

    Hadzibabic, Z., Stock, S., Battelier, B., Bretin, V. & Dalibard, J. Interference of an array of independent Bose-Einstein condensates. Phys. Rev. Lett. 93, 180403 (2004)

  15. 15

    Köhl, M., Moritz, H., Stöferle, T., Schori, C. & Esslinger, T. Superfluid to Mott insulator transition in one, two, and three dimensions. J. Low Temp. Phys. 138, 635–644 (2005)

  16. 16

    Stock, S., Hadzibabic, Z., Battelier, B., Cheneau, M. & Dalibard, J. Observation of phase defects in quasi-two-dimensional Bose-Einstein condensates. Phys. Rev. Lett. 95, 190403 (2005)

  17. 17

    Bagnato, V. & Kleppner, D. Bose-Einstein condensation in low-dimensional traps. Phys. Rev. A 44, 7439–7441 (1991)

  18. 18

    Petrov, D. S., Holzmann, M. & Shlyapnikov, G. V. Bose-Einstein condensation in quasi-2D trapped gases. Phys. Rev. Lett. 84, 2551–2554 (2000)

  19. 19

    Fernandez, J. P. & Mullin, W. J. The two-dimensional Bose-Einstein condensate. J. Low Temp. Phys. 128, 233–249 (2002)

  20. 20

    Andersen, J. O., Al Khawaja, U. & Stoof, H. T. C. Phase fluctuations in atomic Bose gases. Phys. Rev. Lett. 88, 070407 (2002)

  21. 21

    Petrov, D. S., Gangardt, D. M. & Shlyapnikov, G. V. Low-dimensional trapped gases. J. Phys. IV (France) 116, 5–44 (2004)

  22. 22

    Simula, T. P., Lee, M. D. & Hutchinson, D. A. Transition from the Bose-Einstein condensate to the Berezinskii-Kosterlitz-Thouless phase. Phil. Mag. Lett. 85, 395–403 (2005)

  23. 23

    Holzmann, M., Baym, G., Blaizot, J.-P. & Laloë, F. The Kosterlitz-Thouless-Berezinskii transition of homogeneous and trapped Bose gases in two dimensions. Preprint at http://arxiv.org/cond-mat/0508131 (2005).

  24. 24

    Simula, T. P. & Blakie, P. B. Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates. Phys. Rev. Lett. 96, 020404 (2006)

  25. 25

    Bramwell, S. T. & Holdsworth, P. C. W. Magnetization: A characteristic of the Kosterlitz-Thouless-Berezinskii transition. Phys. Rev. B 49, 8811–8814 (1994)

  26. 26

    Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997)

  27. 27

    Hellweg, D. et al. Measurement of the spatial correlation function of phase fluctuating Bose-Einstein condensates. Phys. Rev. Lett. 91, 010406 (2003)

  28. 28

    Polkovnikov, A., Altman, E. & Demler, E. Interference between independent fluctuating condensates. Proc. Natl Acad. Sci. USA 103, 6125–6129 (2006)

  29. 29

    Nelson, D. R. & Kosterlitz, J. M. Universal jump in superfluid density of 2-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977)

Download references


We thank E. Altman, E. Demler, M. Lukin, A. Polkovnikov, P.-S. Rath, D. Stamper-Kurn and S. Stock for discussions. We acknowledge financial support by IFRAF, ACI Nanoscience, ANR, the Alexander von Humboldt foundation (P.K.) and the EU (Marie-Curie fellowships to Z.H. and P.K.). Laboratoire Kastler Brossel is a research unit of Ecole Normale Supérieure and Université Paris 6, associated with CNRS.

Author information


  1. Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris, 24 rue Lhomond, F-75231 CEDEX 05, France

    • Zoran Hadzibabic
    • , Peter Krüger
    • , Marc Cheneau
    • , Baptiste Battelier
    •  & Jean Dalibard


  1. Search for Zoran Hadzibabic in:

  2. Search for Peter Krüger in:

  3. Search for Marc Cheneau in:

  4. Search for Baptiste Battelier in:

  5. Search for Jean Dalibard in:

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to Jean Dalibard.

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.