Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate

Abstract

The amide functional group is one of the most fundamental motifs found in chemistry and biology, and it has been studied extensively for the past century1. Typical acyclic amides are planar. But the amide groups of bicyclic bridgehead lactams1,2 are highly twisted, and this distortion from planarity can dramatically affect the stability and reactivity of these amides; it also increases the basicity of the nitrogen so that it often behaves more like an amine than a typical planar amide. As a result, the structures and reactivity profiles of these ‘anti-Bredt’ amides3 differ significantly from those of planar amides. It is possible that this twisting phenomenon is not exclusive to cyclic systems—non-planarity may also be a critical biological design element that leads to amide ground-state destabilization and alters the reactivity, selectivity and mechanism of various protein and enzymatic processes (such as amide hydrolysis1,4,5,6,7,8,9,10). The intriguing qualities of these twisted amides were first recognized in 1938 (ref. 11), wherein one of the simplest families was introduced—molecules containing the 1-azabicyclo[2.2.2]octan-2-one system. But the parent member of this group, 2-quinuclidone (molecule 1 in this paper), has not yet been unambiguously synthesized. Here, we report the chemical synthesis, isolation and full characterization of the HBF4 salt of 1. Critical to the success of the synthesis and isolation was the decision to generate 1 by a route other than classical amide bond formation. We anticipate that these results will provide a greater understanding of the properties of amide bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ring closure reactions to form bicyclic lactams.
Figure 2: Strategies for the synthesis of 2-quinuclidone.
Figure 3: Isolation and unambiguous characterization of 2-quinuclidonium tetrafluoroborate.

Similar content being viewed by others

References

  1. Greenberg, A., Breneman, C. M. & Liebman, J. F. The Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry, and Materials Science (Wiley, New York, 2000)

    Google Scholar 

  2. Greenberg, A. Twisted bridgehead bicyclic lactams. Mol. Struct. Energetics 7, 139–178 (1988)

    CAS  Google Scholar 

  3. Bredt, J. Über sterische Hindering in Brückenringen (Bredtsche regel) und über die meso-trans-Stellung in kondensierten Ringsystemen des Hexamethylens. Liebigs Ann. Chem. 437, 1–13 (1924)

    Article  CAS  Google Scholar 

  4. Mujika, J. I., Mercero, J. M. & Lopez, X. Water-promoted hydrolysis of a highly twisted amide: rate acceleration caused by the twist of the amide bond. J. Am. Chem. Soc. 127, 4445–4453 (2005)

    Article  CAS  Google Scholar 

  5. Romanelli, A., Shekhtman, A., Cowburn, D. & Muir, T. W. Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc. Natl Acad. Sci. USA 101, 6397–6402 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Poland, B. W., Xu, M. Q. & Quiocho, F. A. Structural insights into the protein splicing mechanism of PI-SceI. J. Biol. Chem. 275, 16408–16413 (2000)

    Article  CAS  Google Scholar 

  7. Brown, R. S., Bennet, A. J. & Slebocka-Tilk, H. Recent perspectives concerning the mechanism of H3O+- and hydroxide-promoted amide hydrolysis. Acc. Chem. Res. 25, 481–488 (1992)

    Article  CAS  Google Scholar 

  8. Liu, J., Albers, M. W., Chen, C. M., Schreiber, S. L. & Walsh, C. T. Cloning, expression, and purification of human cyclophilin in Escherichia coli and assessment of the catalytic role of cysteines by site-directed mutagenesis. Proc. Natl Acad. Sci. USA 87, 2304–2308 (1990)

    Article  ADS  CAS  Google Scholar 

  9. Harrison, R. K. & Stein, R. L. Mechanistic studies of peptidyl prolyl cis-trans isomerase: evidence for catalysis by distortion. Biochemistry 29, 1684–1689 (1990)

    Article  CAS  Google Scholar 

  10. Mock, W. L. Torsional-strain considerations in enzymology: Some applications to proteases and ensuing mechanistic consequences. Bioorg. Chem. 5, 403–414 (1976)

    Article  CAS  Google Scholar 

  11. Lukeš, R. Sur une nouvelle application de la régle de Bredt. Coll. Czech. Chem. Commun. 10, 148–152 (1938)

    Article  Google Scholar 

  12. Johnson, J. R., Woodward, R. B. & Robinson, R. The constitution of the penicillins. In The Chemistry of Penicillin (eds Clark, H. T., Johnson, J. R. & Robinson, R.) 440–454 (Princeton Univ. Press, Princeton, 1949)

    Google Scholar 

  13. Wasserman, H. H. Profile and scientific contributions of Professor R. B. Woodward. Heterocycles 7, 1–15 (1977)

    Article  CAS  Google Scholar 

  14. Yakhontov, L. N. & Rubsitov, M. V. The synthesis of quinuclidone-2. J. Gen. Chem. USSR 27, 83–87 (1957)

    CAS  Google Scholar 

  15. Pracejus, H., Kehlen, M., Kehlen, H. & Matschiner, H. Neues zur sterischen Mesomeriehhinderung bei Lactamen vom typ des α-Chinuclidons. Tetrahedron 21, 2257–2270 (1965)

    Article  CAS  Google Scholar 

  16. Levkoeva, E. I., Nikitskaya, E. S. & Yakhontov, L. N. Reactions of 2-quinuclidones with and without scission of C–N bonds. Dokl. Akad. Nauk SSSR 192, 342–345 (1970)

    CAS  Google Scholar 

  17. Greenberg, A., Wu, G., Tsai, J.-C. & Chiu, Y.-Y. Improved synthesis of 6,6,7,7-tetramethyl-1-azabicyclo[2.2.2]octan-2-one and its stability toward base-induced methanolysis. Struct. Chem. 4, 127–129 (1993)

    Article  CAS  Google Scholar 

  18. Boivin, J., Gaudin, D., Labrecque, D. & Jankowski, K. Gif oxidation of some alicyclic amines. Tetrahedr. Lett. 31, 2281–2282 (1990)

    Article  CAS  Google Scholar 

  19. Greenberg, A., Moore, D. T. & DuBois, T. D. Small and medium-sized bridgehead bicyclic lactams: a systematic ab initio molecular orbital study. J. Am. Chem. Soc. 118, 8658–8668 (1996)

    Article  CAS  Google Scholar 

  20. Blackburn, G. M., Skaife, C. J. & Kay, I. T. Strain effects in acyl transfer reactions. Part 5. The kinetics of hydrolysis of benzoquinuclidin-2-one: a torsionally-distorted amide. J. Chem. Res. (Miniprint) 3650–3669 (1980)

  21. Bennet, A. J. et al. Relationship between amidic distortion and ease of hydrolysis in base. If amidic resonance does not exist, then what accounts for the accelerated hydrolysis of distorted amides? J. Am. Chem. Soc. 112, 6383–6385 (1990)

    Article  CAS  Google Scholar 

  22. Wang, Q. P., Bennet, A. J., Brown, R. S. & Santarsiero, B. D. Distorted amides as models for activated peptide N–C = O units. 2. The synthesis, hydrolytic profile, and molecular structure of 3,4-dihydro-2-oxo-1,4-propanoquinoline. Can. J. Chem. 68, 1732–1739 (1990)

    Article  CAS  Google Scholar 

  23. Buchanan, G. L. et al. Conformational study of the 1-azabicyclo[3.3.1]nonan-2-one system. Molecular-mechanics calculations and X-ray structure of 5-phenyl-1-azabicyclo[3.3.1]nonan-2-one. J. Chem. Soc. Perkin Trans. 2, 1709–1712 (1983)

  24. Kirby, A. J., Komarov, I. V., Wothers, P. D. & Feeder, N. The most twisted amide: structure and reactions. Angew. Chem. Int. Edn Engl. 37, 785–786 (1998)

    Article  CAS  Google Scholar 

  25. Greenberg, A. & Venanzi, C. A. Structures and energetics of two bridgehead lactams and their N- and O-protonated forms: an ab initio molecular orbital study. J. Am. Chem. Soc. 115, 6951–6957 (1993)

    Article  CAS  Google Scholar 

  26. Williams, R. M. & Lee, B. H. Synthesis of a 1,3-bridged β-lactam: a novel, anti-Bredt β-lactam. J. Am. Chem. Soc. 108, 6431–6433 (1986)

    Article  CAS  Google Scholar 

  27. Aubé, J. & Milligan, G. L. Intramolecular Schmidt reaction of alkyl azides. J. Am. Chem. Soc. 113, 8965–8966 (1991)

    Article  Google Scholar 

  28. Lei, Y., Wrobleski, A. D., Golden, J. E., Powell, D. R. & Aubé, J. Facile C-N cleavage in a series of bridged lactams. J. Am. Chem. Soc. 127, 4552–4553 (2005)

    Article  CAS  Google Scholar 

  29. Dunitz, J. D. & Winkler, F. K. Amide group deformation in medium-ring lactams. Acta Crystallogr. B31, 251–263 (1975)

    Article  CAS  Google Scholar 

  30. Wiberg, K. B. & Laidig, K. E. Barriers to rotation adjacent to double bonds. 3. The C–O barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide “resonance”. J. Am. Chem. Soc. 109, 5935–5943 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. H. Wasserman, E. J. Corey, and N. J. Leonard for discussions. We thank Ono Pharmaceutical Co. Ltd (for a postdoctoral fellowship to K.T.), the Research Corporation, the Camille and Henry Dreyfus Foundation, Merck, Pfizer, Lilly, Amgen and Bristol-Myers Squibb for financial support. We also thank M. W. Day and L. M. Henling for their X-ray crystallographic expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Stoltz.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. Crystallographic data have been deposited at the CCDC (12 Union Road, Cambridge CB2 1EZ, UK) and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 296767. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file provides the full experimental details for the preparation of all new compounds and their characterization (PDF 1376 kb)

Supplementary Data

This file provides the X-ray data for 1•HBF4. (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, K., Stoltz, B. Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate. Nature 441, 731–734 (2006). https://doi.org/10.1038/nature04842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04842

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing