Letter | Published:

Structure of the S-adenosylmethionine riboswitch regulatory mRNA element

Naturevolume 441pages11721175 (2006) | Download Citation

Subjects

Abstract

Riboswitches are cis-acting genetic regulatory elements found in the 5′-untranslated regions of messenger RNAs that control gene expression through their ability to bind small molecule metabolites directly1,2. Regulation occurs through the interplay of two domains of the RNA: an aptamer domain that responds to intracellular metabolite concentrations and an expression platform that uses two mutually exclusive secondary structures to direct a decision-making process. In Gram-positive bacteria such as Bacillus species, riboswitches control the expression of more than 2% of all genes through their ability to respond to a diverse set of metabolites including amino acids, nucleobases and protein cofactors1,2. Here we report the 2.9-Å resolution crystal structure of an S-adenosylmethionine (SAM)-responsive riboswitch from Thermoanaerobacter tengcongensis complexed with S-adenosylmethionine, an RNA element that controls the expression of several genes involved in sulphur and methionine metabolism3,4,5,6. This RNA folds into a complex three-dimensional architecture that recognizes almost every functional group of the ligand through a combination of direct and indirect readout mechanisms. Ligand binding induces the formation of a series of tertiary interactions with one of the helices, serving as a communication link between the aptamer and expression platform domains.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Nudler, E. & Mironov, A. S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004)

  2. 2

    Winkler, W. C. & Breaker, R. R. Genetic control by metabolite-binding riboswitches. ChemBioChem 4, 1024–1032 (2003)

  3. 3

    Epshtein, V., Mironov, A. S. & Nudler, E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl Acad. Sci. USA 100, 5052–5056 (2003)

  4. 4

    Grundy, F. J. & Henkin, T. M. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol. Microbiol. 30, 737–749 (1998)

  5. 5

    McDaniel, B. A., Grundy, F. J., Artsimovitch, I. & Henkin, T. M. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl Acad. Sci. USA 100, 3083–3088 (2003)

  6. 6

    Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E. & Breaker, R. R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nature Struct. Biol. 10, 701–707 (2003)

  7. 7

    Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005)

  8. 8

    Winkler, W. C., Grundy, F. J., Murphy, B. A. & Henkin, T. M. The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs. RNA 7, 1165–1172 (2001)

  9. 9

    McDaniel, B. A., Grundy, F. J. & Henkin, T. M. A tertiary structural element in S box leader RNAs is required for S-adenosylmethionine-directed transcription termination. Mol. Microbiol. 57, 1008–1021 (2005)

  10. 10

    Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. & Strobel, S. A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004)

  11. 11

    Golden, B. L., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme–product complex. Nature Struct. Mol. Biol. 12, 82–89 (2005)

  12. 12

    Guo, F., Gooding, A. R. & Cech, T. R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16, 351–362 (2004)

  13. 13

    Klein, D. J., Schmeing, T. M., Moore, P. B. & Steitz, T. A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001)

  14. 14

    Moore, T., Zhang, Y., Fenley, M. O. & Li, H. Molecular basis of box C/D RNA–protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12, 807–818 (2004)

  15. 15

    Vidovic, I., Nottrott, S., Hartmuth, K., Luhrmann, R. & Ficner, R. Crystal structure of the spliceosomal 15.5 kD protein bound to a U4 snRNA fragment. Mol. Cell 6, 1331–1342 (2000)

  16. 16

    Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001)

  17. 17

    Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000)

  18. 18

    Lim, J., Winkler, W. C., Nakamura, S., Scott, V. & Breaker, R. R. Molecular-recognition characteristics of SAM-binding riboswitches. Angew. Chem. Int. Edn Engl. 45, 964–968 (2006)

  19. 19

    Batey, R. T., Gilbert, S. D. & Montange, R. K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004)

  20. 20

    Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004)

  21. 21

    Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335 (2003)

  22. 22

    Ishida, T., Tanaka, A., Inoue, M., Fujiwara, T. & Tomita, K. Conformational studies of S-adenosyl-l-homocysteine, a potential inhibitor of S-adenosyl-l-methionine-dependent methyltransferases. J. Am. Chem. Soc. 104, 7239–7248 (1982)

  23. 23

    Cate, J. H. et al. RNA tertiary structure mediation by adenosine platforms. Science 273, 1696–1699 (1996)

  24. 24

    Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002)

  25. 25

    Auffinger, P., Bielecki, L. & Westhof, E. Anion binding to nucleic acids. Structure 12, 379–388 (2004)

  26. 26

    Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004)

  27. 27

    Kieft, J. S. & Batey, R. T. A general method for rapid and nondenaturing purification of RNAs. RNA 10, 988–995 (2004)

  28. 28

    Pflugrath, J. W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D 55, 1718–1725 (1999)

  29. 29

    Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

Download references

Acknowledgements

We thank S. Edwards for managing the CU Boulder X-ray crystallography facility, the staff at ALS beamline 8.2.1 for assistance, and A. Pardi, T. Cech, R. Breaker, W. Winkler, B. Golden, J. Kieft and A. Ke for discussions. This work was supported by grants from the National Institutes of Health and the W. M. Keck Foundation Initiative in RNA Science at the University of Colorado (R.T.B.) and a National Institutes of Health Predoctoral Training Grant (R.K.M.).

Author information

Affiliations

  1. Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, Colorado, 80309, USA

    • Rebecca K. Montange
    •  & Robert T. Batey

Authors

  1. Search for Rebecca K. Montange in:

  2. Search for Robert T. Batey in:

Competing interests

The atomic coordinates and structure factors have been deposited in the Protein Data Bank with the accession number 2GIS. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Corresponding author

Correspondence to Robert T. Batey.

Supplementary information

  1. Supplementary Notes

    This file contains Supplementary Methods (outlining the experimental techniques used for the crystallization, data collection and refinement of the SAM-I model), Supplementary Table 1, Supplementary Figures 1–5 and additional references. (DOC 4233 kb)

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nature04819

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.