Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the S-adenosylmethionine riboswitch regulatory mRNA element

Abstract

Riboswitches are cis-acting genetic regulatory elements found in the 5′-untranslated regions of messenger RNAs that control gene expression through their ability to bind small molecule metabolites directly1,2. Regulation occurs through the interplay of two domains of the RNA: an aptamer domain that responds to intracellular metabolite concentrations and an expression platform that uses two mutually exclusive secondary structures to direct a decision-making process. In Gram-positive bacteria such as Bacillus species, riboswitches control the expression of more than 2% of all genes through their ability to respond to a diverse set of metabolites including amino acids, nucleobases and protein cofactors1,2. Here we report the 2.9-Å resolution crystal structure of an S-adenosylmethionine (SAM)-responsive riboswitch from Thermoanaerobacter tengcongensis complexed with S-adenosylmethionine, an RNA element that controls the expression of several genes involved in sulphur and methionine metabolism3,4,5,6. This RNA folds into a complex three-dimensional architecture that recognizes almost every functional group of the ligand through a combination of direct and indirect readout mechanisms. Ligand binding induces the formation of a series of tertiary interactions with one of the helices, serving as a communication link between the aptamer and expression platform domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary and tertiary structure of the SAM-I riboswitch.
Figure 2: Comparison of the global architecture of the Azoarcus group I intron and the SAM-I riboswitch.
Figure 3: Detailed view of the tertiary architecture of the pseudoknot region.
Figure 4: Detailed view of SAM recognition by the riboswitch.

Similar content being viewed by others

References

  1. Nudler, E. & Mironov, A. S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Winkler, W. C. & Breaker, R. R. Genetic control by metabolite-binding riboswitches. ChemBioChem 4, 1024–1032 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Epshtein, V., Mironov, A. S. & Nudler, E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl Acad. Sci. USA 100, 5052–5056 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grundy, F. J. & Henkin, T. M. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol. Microbiol. 30, 737–749 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. McDaniel, B. A., Grundy, F. J., Artsimovitch, I. & Henkin, T. M. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl Acad. Sci. USA 100, 3083–3088 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winkler, W. C., Nahvi, A., Sudarsan, N., Barrick, J. E. & Breaker, R. R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nature Struct. Biol. 10, 701–707 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Winkler, W. C., Grundy, F. J., Murphy, B. A. & Henkin, T. M. The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs. RNA 7, 1165–1172 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McDaniel, B. A., Grundy, F. J. & Henkin, T. M. A tertiary structural element in S box leader RNAs is required for S-adenosylmethionine-directed transcription termination. Mol. Microbiol. 57, 1008–1021 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. & Strobel, S. A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Golden, B. L., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme–product complex. Nature Struct. Mol. Biol. 12, 82–89 (2005)

    Article  CAS  Google Scholar 

  12. Guo, F., Gooding, A. R. & Cech, T. R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16, 351–362 (2004)

    CAS  PubMed  Google Scholar 

  13. Klein, D. J., Schmeing, T. M., Moore, P. B. & Steitz, T. A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moore, T., Zhang, Y., Fenley, M. O. & Li, H. Molecular basis of box C/D RNA–protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12, 807–818 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Vidovic, I., Nottrott, S., Hartmuth, K., Luhrmann, R. & Ficner, R. Crystal structure of the spliceosomal 15.5 kD protein bound to a U4 snRNA fragment. Mol. Cell 6, 1331–1342 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA 98, 4899–4903 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lim, J., Winkler, W. C., Nakamura, S., Scott, V. & Breaker, R. R. Molecular-recognition characteristics of SAM-binding riboswitches. Angew. Chem. Int. Edn Engl. 45, 964–968 (2006)

    Article  CAS  Google Scholar 

  19. Batey, R. T., Gilbert, S. D. & Montange, R. K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schubert, H. L., Blumenthal, R. M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishida, T., Tanaka, A., Inoue, M., Fujiwara, T. & Tomita, K. Conformational studies of S-adenosyl-l-homocysteine, a potential inhibitor of S-adenosyl-l-methionine-dependent methyltransferases. J. Am. Chem. Soc. 104, 7239–7248 (1982)

    Article  CAS  Google Scholar 

  23. Cate, J. H. et al. RNA tertiary structure mediation by adenosine platforms. Science 273, 1696–1699 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Auffinger, P., Bielecki, L. & Westhof, E. Anion binding to nucleic acids. Structure 12, 379–388 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Kieft, J. S. & Batey, R. T. A general method for rapid and nondenaturing purification of RNAs. RNA 10, 988–995 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pflugrath, J. W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D 55, 1718–1725 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Edwards for managing the CU Boulder X-ray crystallography facility, the staff at ALS beamline 8.2.1 for assistance, and A. Pardi, T. Cech, R. Breaker, W. Winkler, B. Golden, J. Kieft and A. Ke for discussions. This work was supported by grants from the National Institutes of Health and the W. M. Keck Foundation Initiative in RNA Science at the University of Colorado (R.T.B.) and a National Institutes of Health Predoctoral Training Grant (R.K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Batey.

Ethics declarations

Competing interests

The atomic coordinates and structure factors have been deposited in the Protein Data Bank with the accession number 2GIS. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods (outlining the experimental techniques used for the crystallization, data collection and refinement of the SAM-I model), Supplementary Table 1, Supplementary Figures 1–5 and additional references. (DOC 4233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montange, R., Batey, R. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006). https://doi.org/10.1038/nature04819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04819

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing