Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-redshift galaxy populations

Abstract

We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, γ-ray bursts. The γ-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Star formation history versus cosmic time since the Big Bang.
Figure 2: The Hubble Deep Field used for HST studies and for ground-based narrowband Lyα surveys.
Figure 3: Lyman α emission-line profiles of galaxies at z ≈ 5.7 and z ≈ 6.6.
Figure 4: Distribution of z ≈ 5.7 and z ≈ 6.5 in two adjacent Suprime-Cam fields.
Figure 5: Ultraviolet continuum luminosity functions for galaxies from redshifts 3 to 6.

References

  1. Gunn, J. E. & Peterson, B. A. On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633–1641 (1965).

    ADS  CAS  Google Scholar 

  2. Hu, E. M. & McMahon, R. G. Detection of Lyman-α-emitting galaxies at redshift 4.55. Nature 382, 231–233 (1996).

    ADS  CAS  Google Scholar 

  3. Hu, E. M., McMahon, R. G. & Egami, E. Detection of a Lyα emission-line companion to the z = 4.69 QSO BR1202–0725. Astrophys. J. 459, L53–L57 (1996).

    ADS  CAS  Google Scholar 

  4. Schneider, D. P., Schmidt, M. & Gunn, J. E. PC 1247 + 3406: An optically selected quasar with a redshift of 4.897. Astron. J. 102, 837–840 (1991).

    ADS  CAS  Google Scholar 

  5. Dey, A., Spinrad, H., Stern, D., Graham, J. R. & Chaffee, F. H. A galaxy at z = 5.34. Astrophys. J. 498, L93–L97 (1998).

    ADS  Google Scholar 

  6. Weymann, R. J. et al. Keck spectroscopy and NICMOS photometry of a redshift z = 5.60 galaxy. Astrophys. J. 505, L95–L98 (1998).

    ADS  CAS  Google Scholar 

  7. Hu, E. M., McMahon, R. G. & Cowie, L. L. An extremely luminous galaxy at z = 5.74. Astrophys. J. 522, L9–L12 (1999).

    ADS  CAS  Google Scholar 

  8. Fan, X. et al. A survey of z > 5.8 quasars in the Sloan Digital Sky Survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z 6. Astron. J. 122, 2833–2849 (2001).

    ADS  Google Scholar 

  9. Hu, E. M. et al. A redshift z = 6.56 galaxy behind the cluster Abell 370. Astrophys. J. 568, L75–L79 (2002).

    ADS  CAS  Google Scholar 

  10. Kodaira, K. et al. The discovery of two Lyman α emitters beyond redshift 6 in the Subaru Deep Field. Publ. Astron. Soc. Jpn 55, L17–L21 (2003).

    ADS  CAS  Google Scholar 

  11. Rhoads, J. E. et al. A luminous Lyα-emitting galaxy at redshift z = 6.535: Discovery and spectroscopic confirmation. Astrophys. J. 611, 59–67 (2004).

    ADS  MathSciNet  CAS  Google Scholar 

  12. Kurk, J. D. et al. A Lyman α emitter at z = 6.5 found with slitless spectroscopy. Astron. Astrophys. 422, L13–L17 (2004).

    ADS  CAS  Google Scholar 

  13. Taniguchi, Y. et al. The SUBARU Deep Field Project: Lyman α emitters at a redshift of 6.6. Publ. Astron. Soc. Jpn 57, 165–182 (2005).

    ADS  CAS  Google Scholar 

  14. Stern, D. et al. A galaxy at z = 6.545 and constraints on the epoch of reionization. Astrophys. J. 619, 12–18 (2005).

    ADS  CAS  Google Scholar 

  15. Hu, E. M., Cowie, L. L., Capak, P. & Kakazu, Y. in IAU Colloq. 199: Probing Galaxies through Quasar Absorption Lines (eds Williams, P. R., Shu, C. & Ménard, B.) 363–368 (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  16. Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. Astron. J. 125, 1649–1659 (2003).

    ADS  Google Scholar 

  17. Kneib, J. -P., Ellis, R. S., Santos, M. R. & Richard, J. A probable z 7 galaxy strongly lensed by the rich cluster A2218: Exploring the Dark Ages. Astrophys. J. 607, 697–703 (2004).

    ADS  CAS  Google Scholar 

  18. Bouwens, R. J. et al. Galaxies at z 7–8: z850-dropouts in the Hubble Ultra Deep Field. Astrophys. J. 616, L79–L82 (2004).

    ADS  CAS  Google Scholar 

  19. Becker, R. H. et al. Evidence for reionization at z 6: Detection of a Gunn–Peterson trough in a z = 6.28 quasar. Astron. J. 122, 2850–2857 (2001).

    ADS  Google Scholar 

  20. Fan, X. et al. Evolution of the ionizing background and the epoch of reionization from the spectra of z 6 quasars. Astron. J. 123, 1247–1257 (2002).

    ADS  Google Scholar 

  21. Songaila, A. The evolution of the intergalactic medium transmission to redshift 6. Astron. J. 127, 2598–2603 (2004).

    ADS  Google Scholar 

  22. Fan, X. et al. Constraining the evolution of the ionizing background and the epoch of reionization with z 6 quasars II: A sample of 19 quasars. ArXiv Astrophysics e-prints 〈astro-ph/0512082〉 (2006).

    Google Scholar 

  23. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003).

    ADS  Google Scholar 

  24. Kogut, A. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Temperature-polarization correlation. Astrophys. J. Suppl. Ser. 148, 161–173 (2003).

    ADS  Google Scholar 

  25. Cen, R. The universe was reionized twice. Astrophys. J. 591, 12–37 (2003).

    ADS  CAS  Google Scholar 

  26. Wyithe, J. S. B. & Loeb, A. Undetected sources allow transmission of the Lyα line from galaxies prior to reionization. Astrophys. J. 625, 1–5 (2005).

    ADS  CAS  Google Scholar 

  27. Wyithe, J. S. B. & Loeb, A. Cosmic variance in the transparency of the intergalactic medium after reionization. Astrophys. J. (in the press).

  28. Haiman, Z. The detectability of high-redshift Lyα emission lines prior to the reionization of the universe. Astrophys. J. 576, L1–L4 (2002).

    ADS  Google Scholar 

  29. Furlanetto, S. R., Zaldarriaga, M. & Hernquist, L. The effects of reionization on Lyα galaxy surveys. Mon. Not. R. Astron. Soc. 365, 1012–1020 (2006).

    ADS  CAS  Google Scholar 

  30. Spinrad, H. in Astrophysics Update (ed. Mason, J. W.) 155–181 (Springer-Praxis, Berlin, 2004).

    Google Scholar 

  31. Spinrad, H. Galaxy Formation and Evolution (Springer-Praxis, Berlin, 2005).

    Google Scholar 

  32. Dickinson, M., Giavalisco, M. & The GOODS Team in The Mass of Galaxies at Low and High Redshift (eds Bender, R. & Renzini, A.) 324–331 (European Southern Observatory, 2003).

    Google Scholar 

  33. van Breugel, W. et al. A radio galaxy at z = 5.19. Astrophys. J. 518, L6–L64 (1999).

    Google Scholar 

  34. Barger, A. J. et al. Very high redshift X-ray-selected active galactic nuclei in the Chandra Deep Field-North. Astrophys. J. 584, L61–L64 (2003).

    ADS  Google Scholar 

  35. Steffen, A. T. et al. An optical catalog of the Chandra Large Area Synoptic X-Ray Survey sources. Astron. J. 128, 1483–1500 (2004).

    ADS  CAS  Google Scholar 

  36. Klamer, I. J. et al. CO (1-0) and CO (5-4) observations of the most distant known radio galaxy at z = 5.2. Astrophys. J. 621, L1–L4 (2005).

    ADS  CAS  Google Scholar 

  37. Walter, F. et al. Molecular gas in the host galaxy of a quasar at redshift z = 6.42. Nature 424, 406–408 (2003).

    ADS  CAS  Google Scholar 

  38. Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).

    ADS  CAS  Google Scholar 

  39. Miralda-Escudé, J. Reionization of the intergalactic medium and the damping wing of the Gunn–Peterson trough. Astrophys. J. 501, 15–22 (1998).

    ADS  Google Scholar 

  40. Miralda-Escudé, J. & Rees, M. J. Searching for the earliest galaxies using the Gunn–Peterson trough and the Lyα emission line. Astrophys. J. 497, 21–27 (1998).

    ADS  Google Scholar 

  41. Loeb, A. & Rybicki, G. B. Scattered Lyα radiation around sources before cosmological reionization. Astrophys. J. 524, 527–535 (1999).

    ADS  CAS  Google Scholar 

  42. Hu, E. M. et al. The luminosity function of Lyα emitters at redshift z 5.7. Astron. J. 127, 563–575 (2004).

    ADS  Google Scholar 

  43. Hu, E. M., Cowie, L. L., Capak, P. & Kakazu, Y. Lyα emitters at redshift z 5.7 in a wide field around the HDF-N. Astron. J. (submitted).

  44. Schaerer, D. The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies. Astron. Astrophys. 397, 527–538 (2003).

    ADS  CAS  Google Scholar 

  45. Bromm, V. & Loeb, A. High-redshift gamma-ray bursts from Population III progenitors. Astrophys. J. (in the press).

  46. Lamb, D. Q. & Reichart, D. E. Gamma-ray bursts as a probe of the very high redshift universe. Astrophys. J. 536, 1–18 (2000).

    ADS  Google Scholar 

  47. Bromm, V. & Loeb, A. The expected redshift distribution of gamma-ray bursts. Astrophys. J. 575, 111–116 (2002).

    ADS  Google Scholar 

  48. Stanway, E. R., Bunker, A. J. & McMahon, R. G. Lyman break galaxies and the star formation rate of the Universe at z 6. Mon. Not. R. Astron. Soc. 342, 439–445 (2003).

    ADS  CAS  Google Scholar 

  49. Bunker, A. J., Stanway, E. R., Ellis, R. S. & McMahon, R. G. The star formation rate of the Universe at z 6 from the Hubble Ultra-Deep Field. Mon. Not. R. Astron. Soc. 355, 374–384 (2004).

    ADS  CAS  Google Scholar 

  50. Bunker, A. et al. in UC Irvine Workshop on First Light & Reionization, New Astron. Rev. 50, 94–100 (2006).

    Google Scholar 

  51. Bouwens, R., Broadhurst, T. & Illingworth, G. Cloning dropouts: Implications for galaxy evolution at high redshift. Astrophys. J. 593, 640–660 (2003).

    ADS  Google Scholar 

  52. Bouwens, R. & Illingworth, G. Luminosity functions and star formation rates at z 6–10: Galaxy buildup in the reionization age. New Astron. Rev. 50, 152–156 (2006).

    ADS  Google Scholar 

  53. Bouwens, R. J., Illingworth, G. D., Blakeslee, J. P. & Franx, M. Galaxies at z 6: The restframe UV luminosity function and luminosity density from 506 UDF, UDF-Ps, and GOODS i-dropouts. Astrophys. J. (in the press).

  54. Yan, H. & Windhorst, R. A. Candidates of z ≈ 5.5–7 galaxies in the Hubble Space Telescope Ultra Deep Field. Astrophys. J. 612, L93–L96 (2004).

    ADS  CAS  Google Scholar 

  55. Bunker, A. J., Stanway, E. R., Ellis, R. S., McMahon, R. G. & McCarthy, P. J. A star-forming galaxy at z = 5.78 in the Chandra Deep Field South. Mon. Not. R. Astron. Soc. 342, L47–L51 (2003).

    ADS  CAS  Google Scholar 

  56. Stanway, E. R. et al. Hubble Space Telescope imaging and Keck spectroscopy of z 6 i-band dropout galaxies in the Advanced Camera for Surveys GOODS fields. Astrophys. J. 607, 704–720 (2004).

    ADS  CAS  Google Scholar 

  57. Stanway, E. R. et al. Three Lyα emitters at z 6: Early GMOS/Gemini data from the GLARE project. Astrophys. J. 604, L13–L16 (2004).

    ADS  Google Scholar 

  58. Malhotra, S. et al. An overdensity of galaxies at z = 5.9 5 0.2 in the Hubble Ultra Deep Field confirmed using the ACS grism. Astrophys. J. 626, 666–679 (2005).

    ADS  CAS  Google Scholar 

  59. Wyder, T. K. et al. The ultraviolet galaxy luminosity function in the local universe from GALEX data. Astrophys. J. 619, L15–L18 (2005).

    ADS  CAS  Google Scholar 

  60. Treyer, M. A., Ellis, R. S., Milliard, B., Donas, J. & Bridges, T. J. An ultraviolet-selected galaxy redshift survey: New estimates of the local star formation rate. Mon. Not. R. Astron. Soc. 300, 303–314 (1998).

    ADS  CAS  Google Scholar 

  61. Stiavelli, M., Fall, S. M. & Panagia, N. Observable properties of cosmological reionization sources. Astrophys. J. 600, 508–519 (2004).

    ADS  CAS  Google Scholar 

  62. Barkana, R. & Loeb, A. Unusually large fluctuations in the statistics of galaxy formation at high redshift. Astrophys. J. 609, 474–481 (2004).

    ADS  CAS  Google Scholar 

  63. Shimasaku, K. et al. Large cosmic variance in the clustering properties of Lyα emitters at z ≈ 5. Astrophys. J. 605, L93–L96 (2004).

    ADS  CAS  Google Scholar 

  64. Haiman, Z. & Spaans, M. Models for dusty Lyα emitters at high redshift. Astrophys. J. 518, 138–144 (1999).

    ADS  CAS  Google Scholar 

  65. Steidel, C. C. et al. Lyα imaging of a proto-cluster region at <z>=3.09. Astrophys. J. 532, 170–182 (2000).

    ADS  Google Scholar 

  66. Rhoads, J. E. et al. First results from the Large-Area Lyman Alpha Survey. Astrophys. J. 545, L85–L88 (2000).

    ADS  CAS  Google Scholar 

  67. Miyazaki, S. et al. Subaru prime focus camera: Suprime-Cam. Publ. Astron. Soc. Jpn 54, 833–853 (2002).

    ADS  Google Scholar 

  68. Rhoads, J. E. et al. Spectroscopic confirmation of three redshift z ≈ 5.7 Lyα emitters from the Large-Area Lyman Alpha Survey. Astron. J. 125, 1006–1013 (2003).

    ADS  CAS  Google Scholar 

  69. Cuby, J. -G. et al. Discovery of a z = 6.17 galaxy from CFHT and VLT observations. Astron. Astrophys. 405, L19–L22 (2003).

    ADS  CAS  Google Scholar 

  70. Dickinson, M. et al. Color-selected galaxies at z 6 in the Great Observatories Origins Deep Survey. Astrophys. J. 600, L99–L102 (2004).

    ADS  CAS  Google Scholar 

  71. Ellis, R., Santos, M. R., Kneib, J. -P. & Kuijken, K. A faint star-forming system viewed through the lensing cluster Abell 2218: First light at z ≈ 5.6? Astrophys. J. 560, L119–L122 (2001).

    ADS  CAS  Google Scholar 

  72. Ouchi, M. et al. The discovery of primeval large-scale structures with forming clusters at redshift 6. Astrophys. J. 620, L1–L4 (2005).

    ADS  Google Scholar 

  73. Taniguchi, Y. et al. The discovery of a very narrow line star-forming object at a redshift of 5.66. Astrophys. J. 585, L97–L100 (2003).

    ADS  Google Scholar 

  74. Ajiki, M. et al. A new high-redshift Lyα emitter: Possible superwind galaxy at z = 5.69. Astrophys. J. 576, L25–L28 (2002).

    ADS  Google Scholar 

  75. Nagao, T. et al. A strong Lyα emitter at z = 6.33 in the Subaru Deep Field selected as an i′-dropout. Astrophys. J. 613, L9–L12 (2004).

    ADS  CAS  Google Scholar 

  76. Nagao, T. et al. Spectroscopy of I′-dropout galaxies with an NB921-band depression in the Subaru Deep Field. Astrophys. J. 634, 142–148 (2005).

    ADS  CAS  Google Scholar 

  77. Malhotra, S. & Rhoads, J. The volume fraction of ionized intergalactic gas at redshift z = 6.5. ArXiv Astrophysics e-prints 〈astro-ph/0511196〉 (2006).

    Google Scholar 

  78. Santos, M. R., Ellis, R. S., Kneib, J. -P., Richard, J. & Kuijken, K. The abundance of low-luminosity Lyα emitters at high redshift. Astrophys. J. 606, 683–701 (2004).

    ADS  CAS  Google Scholar 

  79. Pelló, R., Schaerer, D., Richard, J., Le Borgne, J. -F. & Kneib, J. -P. ISAAC/VLT observations of a lensed galaxy at z = 10.0. Astron. Astrophys. 416, L35–L40 (2004).

    ADS  Google Scholar 

  80. Bremer, M. N., Jensen, J. B., Lehnert, M. D., Förster Schreiber, N. M. & Douglas, L. Gemini H-band imaging of the field of a z = 10 candidate. Astrophys. J. 615, L1–L4 (2004).

    ADS  CAS  Google Scholar 

  81. Weatherley, S. J., Warren, S. J. & Babbedge, T. S. R. Reanalysis of the spectrum of the z = 10 galaxy. Astron. Astrophys. 428, L29–L32 (2004).

    ADS  Google Scholar 

  82. Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M. & Pettini, M. Lyman break galaxies at z > 4 and the evolution of the UV luminosity density at high redshift. Astrophys. J. 519, 1–17 (1999).

    ADS  CAS  Google Scholar 

  83. Willis, J. P. & Courbin, F. A deep, narrow J-band search for protogalactic Lyα emission at redshifts z 9. Mon. Not. R. Astron. Soc. 357, 1348–1356 (2005).

    ADS  CAS  Google Scholar 

  84. Barger, A. J. et al. Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift. Nature 394, 248–251 (1998).

    ADS  CAS  Google Scholar 

  85. Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998).

    ADS  CAS  Google Scholar 

  86. Blain, A. W. & Longair, M. S. Submillimetre cosmology. Mon. Not. R. Astron. Soc. 264, 509–521 (1993).

    ADS  CAS  Google Scholar 

  87. Wang, W.-H., Cowie, L. L. & Barger. A near-infrared analysis of the submillimeter background and the cosmic star-formation history. Astrophys. J. (in the press).

  88. Barger, A. J., Cowie, L. L. & Richards, E. A. Mapping the evolution of high-redshift dusty galaxies with submillimeter observations of a radio-selected sample. Astron. J. 119, 2092–2109 (2000).

    ADS  Google Scholar 

  89. Kawai, N. et al. Afterglow spectrum of a gamma-ray burst with the highest known redshift z = 6.295. Nature (in the press).

  90. Malhotra, S. & Rhoads, J. E. Luminosity functions of Lyα emitters at redshifts z = 6.5 and z = 5.7: Evidence against reionization at z < 6.5. Astrophys. J. 617, L5–L8 (2004).

    ADS  CAS  Google Scholar 

  91. Egami, E. et al. Spitzer and Hubble Space Telescope constraints on the physical properties of the z 7 galaxy strongly lensed by A2218. Astrophys. J. 618, L5–L8 (2005).

    ADS  Google Scholar 

  92. Chary, R. -R., Stern, D. & Eisenhardt, P. Spitzer constraints on the z = 6.56 galaxy lensed by Abell 370. Astrophys. J. 635, L5–L8 (2005).

    ADS  CAS  Google Scholar 

  93. Mobasher, B. et al. Evidence for a massive poststarburst galaxy at z 6.5. Astrophys. J. 635, 832–844 (2005).

    ADS  Google Scholar 

  94. Yan, H. et al. Rest-frame ultraviolet-to-optical properties of galaxies at z 6 and z 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer. Astrophys. J. 634, 109–127 (2005).

    ADS  CAS  Google Scholar 

  95. Schiminovich, D. et al. The GALEX-VVDS measurement of the evolution of the far-ultraviolet luminosity density and the cosmic star formation rate. Astrophys. J. 619, L47–L50 (2005).

    ADS  CAS  Google Scholar 

  96. Wilson, G., Cowie, L. L., Barger, A. J. & Burke, D. J. Star formation history since z = 1.5 as inferred from rest-frame ultraviolet luminosity density evolution. Astron. J. 124, 1258–1265 (2002).

    ADS  CAS  Google Scholar 

  97. Iwata, I. et al. Lyman break galaxies at z 5: Luminosity function. Publ. Astron. Soc. Jpn 55, 415–432 (2003).

    ADS  CAS  Google Scholar 

  98. Cole, S. et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions. Mon. Not. R. Astron. Soc. 326, 255–273 (2001).

    ADS  Google Scholar 

  99. Cowie, L. L. & Hu, E. M. High-z Lyα emitters. I. A blank-field search for objects near redshift z = 3.4 in and around the Hubble Deep Field and the Hawaii Deep Field SSA22. Astron. J. 115, 1319–1328 (1998).

    ADS  CAS  Google Scholar 

  100. Hu, E. M., Cowie, L. L. & McMahon, R. G. The density of Lyα emitters at very high redshift. Astrophys. J. 502, L99–L103 (1998).

    ADS  CAS  Google Scholar 

  101. Shimasaku, K. et al. Subaru Deep Survey. IV. Discovery of a large-scale structure at redshift ≈ 5. Astrophys. J. 586, L111–L114 (2003).

    ADS  Google Scholar 

  102. Spergel, D. N. et al. Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. ArXiv Astrophysics e-prints 〈astro-ph/0603449〉 (2006).

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation grants. We thank E. Stanway and A. Barger for their help in constructing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther M. Hu.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, E., Cowie, L. High-redshift galaxy populations. Nature 440, 1145–1150 (2006). https://doi.org/10.1038/nature04806

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04806

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing