The large-scale structure of the Universe

Abstract

Research over the past 25 years has led to the view that the rich tapestry of present-day cosmic structure arose during the first instants of creation, where weak ripples were imposed on the otherwise uniform and rapidly expanding primordial soup. Over 14 billion years of evolution, these ripples have been amplified to enormous proportions by gravitational forces, producing ever-growing concentrations of dark matter in which ordinary gases cool, condense and fragment to make galaxies. This process can be faithfully mimicked in large computer simulations, and tested by observations that probe the history of the Universe starting from just 400,000 years after the Big Bang.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The galaxy distribution obtained from spectroscopic redshift surveys and from mock catalogues constructed from cosmological simulations.
Figure 2: The Lyman α forest as a probe of large-scale structure.
Figure 3: Variance of the weak lensing shear as a function of top-hat smoothing scale.
Figure 4: Time evolution of the cosmic large-scale structure in dark matter and galaxies, obtained from cosmological simulations of the ΛCDM model.
Figure 5: Two-point correlation function of galaxies and dark matter at different epochs, in the Millennium simulation of structure formation5.
Figure 6: The large-scale autocorrelation function of rich clusters.

References

  1. 1

    Colless, M. et al. The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039–1063 (2001).

    ADS  Google Scholar 

  2. 2

    York, D. G. et al. The Sloan Digital Sky Survey: Technical summary. Astron. J. 120, 1579–1587 (2000).

    ADS  Google Scholar 

  3. 3

    Geller, M. J. & Huchra, J. P. Mapping the universe. Science 246, 897–903 (1989).

    ADS  CAS  Google Scholar 

  4. 4

    Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603 (1996).

    ADS  CAS  Google Scholar 

  5. 5

    Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    ADS  CAS  Google Scholar 

  6. 6

    White, S. D. M., Frenk, C. S. & Davis, M. Clustering in a neutrino-dominated universe. Astrophys. J. Lett. 274, L1–L5 (1983).

    ADS  CAS  Google Scholar 

  7. 7

    Guth, A. H. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23, 347–356 (1981).

    ADS  CAS  MATH  Google Scholar 

  8. 8

    Starobinsky, A. A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175–178 (1982).

    ADS  Google Scholar 

  9. 9

    Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933).

    ADS  MATH  Google Scholar 

  10. 10

    Zwicky, F. Nebulae as gravitational lenses. Phys. Rev. 51, 290 (1937).

    ADS  Google Scholar 

  11. 11

    Fischer, P. et al. Weak lensing with Sloan Digital Sky Survey commissioning data: the galaxy-mass correlation function to 1 H−1^Mpc. Astron. J. 120, 1198–1208 (2000).

    ADS  Google Scholar 

  12. 12

    Wilson, G., Kaiser, N., Luppino, G. A. & Cowie, L. L. Galaxy halo masses from galaxy–galaxy lensing. Astrophys. J. 555, 572–584 (2001).

    ADS  Google Scholar 

  13. 13

    Clowe, D., Luppino, G. A., Kaiser, N. & Gioia, I. M. Weak lensing by high-redshift clusters of galaxies. I. Cluster mass reconstruction. Astrophys. J. 539, 540–560 (2000).

    ADS  CAS  Google Scholar 

  14. 14

    Van Waerbeke, L. et al. Cosmic shear statistics and cosmology. Astroparticle Phys. 374, 757–769 (2001).

    Google Scholar 

  15. 15

    Kaiser, N. On the spatial correlations of Abell clusters. Astrophys. J. Lett. 284, L9–L12 (1984).

    ADS  Google Scholar 

  16. 16

    Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    ADS  CAS  Google Scholar 

  17. 17

    Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1986).

    ADS  CAS  Google Scholar 

  18. 18

    White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters — a challenge to cosmological orthodoxy. Nature 366, 429 (1993).

    ADS  CAS  Google Scholar 

  19. 19

    Allen, S. W., Schmidt, R. W., Fabian, A. C. & Ebeling, H. Cosmological constraints from the local X-ray luminosity function of the most X-ray-luminous galaxy clusters. Mon. Not. R. Astron. Soc. 342, 287–298 (2003).

    ADS  Google Scholar 

  20. 20

    Eke, V. R., Cole, S., Frenk, C. S. & Patrick Henry, J. Measuring Ω0 using cluster evolution. Mon. Not. R. Astron. Soc. 298, 1145–1158 (1998).

    ADS  Google Scholar 

  21. 21

    Borgani, S. et al. Measuring Ωm with the ROSAT Deep Cluster Survey. Astrophys. J. 561, 13–21 (2001).

    ADS  Google Scholar 

  22. 22

    Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003).

    ADS  Google Scholar 

  23. 23

    Efstathiou, G., Sutherland, W. J. & Maddox, S. J. The cosmological constant and cold dark matter. Nature 348, 705–707 (1990).

    ADS  Google Scholar 

  24. 24

    Saunders, W., Frenk, C., Rowan-Robinson, M., Lawrence, A. & Efstathiou, G. The density field of the local universe. Nature 349, 32–38 (1991).

    ADS  Google Scholar 

  25. 25

    Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    ADS  MATH  Google Scholar 

  26. 26

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    ADS  Google Scholar 

  27. 27

    Smoot, G. F. et al. Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 396, L1–L5 (1992).

    ADS  Google Scholar 

  28. 28

    de Bernardis, P. et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000).

    ADS  CAS  Google Scholar 

  29. 29

    Hanany, S. et al. MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10−5. Astrophys. J. Lett. 545, L5–L9 (2000).

    ADS  Google Scholar 

  30. 30

    Netterfield, C. B. et al. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571, 604–614 (2002).

    ADS  CAS  Google Scholar 

  31. 31

    Kovac, J. M. et al. Detection of polarization in the cosmic microwave background using DASI. Nature 420, 772–787 (2002).

    ADS  CAS  Google Scholar 

  32. 32

    Leitch, E. M. et al. Measurement of polarization with the Degree Angular Scale Interferometer. Nature 420, 763–771 (2002).

    ADS  CAS  Google Scholar 

  33. 33

    Contaldi, C. R., Hoekstra, H. & Lewis, A. Joint cosmic microwave background and weak lensing analysis: constraints on cosmological parameters. Phys. Rev. Lett. 90, 221303 (2003).

    ADS  Google Scholar 

  34. 34

    Tegmark, M. et al. The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey. Astrophys. J. 606, 702–740 (2004).

    ADS  CAS  Google Scholar 

  35. 35

    Sánchez, A. G. et al. Cosmological parameters from cosmic microwave background measurements and the final 2dF Galaxy Redshift Survey power spectrum. Mon. Not. R. Astron. Soc. 366, 189–207 (2006).

    ADS  Google Scholar 

  36. 36

    Seljak, U. et al. Cosmological parameter analysis including SDSS Ly-α forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. D 71, 103515 (2005).

    ADS  Google Scholar 

  37. 37

    Sunyaev, R. A. & Zeldovich, Y. B. Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970).

    ADS  Google Scholar 

  38. 38

    Cen, R., Miralda-Escude, J., Ostriker, J. P. & Rauch, M. Gravitational collapse of small-scale structure as the origin of the Lyman-α forest. Astrophys. J. Lett. 437, L9–L12 (1994).

    ADS  Google Scholar 

  39. 39

    White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991).

    ADS  Google Scholar 

  40. 40

    Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974).

    ADS  Google Scholar 

  41. 41

    Lacey, C. & Cole, S. Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 262, 627–649 (1993).

    ADS  Google Scholar 

  42. 42

    White, S. D. M. & Rees, M. J. Core condensation in heavy halos: A two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    ADS  Google Scholar 

  43. 43

    Reed, D. S. et al. The first generation of star-forming haloes. Mon. Not. R. Astron. Soc. 363, 393–404 (2005).

    ADS  CAS  Google Scholar 

  44. 44

    Ciardi, B., Ferrara, A. & White, S. D. M. Early reionization by the first galaxies. Mon. Not. R. Astron. Soc. 344, L7–L11 (2003).

    ADS  CAS  Google Scholar 

  45. 45

    Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002).

    ADS  CAS  Google Scholar 

  46. 46

    Hernquist, L., Katz, N., Weinberg, D. H. & Miralda-Escudé, J. The Lyman-α forest in the cold dark matter model. Astrophys. J. Lett. 457, L51 (1996).

    ADS  CAS  Google Scholar 

  47. 47

    Croft, R. A. C., Weinberg, D. H., Katz, N. & Hernquist, L. Recovery of the power spectrum of mass fluctuations from observations of the Ly-α Forest. Astrophys. J. 495, 44 (1998).

    ADS  Google Scholar 

  48. 48

    Croft, R. A. C. et al. Toward a precise measurement of matter clustering: Ly-α forest data at redshifts 2–4. Astrophys. J. 581, 20–52 (2002).

    ADS  Google Scholar 

  49. 49

    Kim, T. -S., Viel, M., Haehnelt, M. G., Carswell, R. F. & Cristiani, S. The power spectrum of the flux distribution in the Lyman α forest of a large sample of UVES QSO absorption spectra (LUQAS). Mon. Not. R. Astron. Soc. 347, 355–366 (2004).

    ADS  CAS  Google Scholar 

  50. 50

    Viel, M., Haehnelt, M. G. & Springel, V. Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra. Mon. Not. R. Astron. Soc. 354, 684–694 (2004).

    ADS  CAS  Google Scholar 

  51. 51

    McDonald, P., Seljak, U., Cen, R., Bode, P. & Ostriker, J. P. Physical effects on the Ly-α forest flux power spectrum: damping wings, ionizing radiation fluctuations and galactic winds. Mon. Not. R. Astron. Soc. 360, 1471–1482 (2005).

    ADS  Google Scholar 

  52. 52

    Aguirre, A. et al. Confronting Cosmological Simulations with Observations of Intergalactic Metals. Astrophys. J. Lett. 620, L13–L17 (2005).

    ADS  CAS  Google Scholar 

  53. 53

    Kaiser, N. Weak gravitational lensing of distant galaxies. Astrophys. J. 388, 272–286 (1992).

    ADS  Google Scholar 

  54. 54

    Van Waerbeke, L., Mellier, Y. & Hoekstra, H. Dealing with systematics in cosmic shear studies: New results from the VIRMOS–Descart survey. Astropart. Phys. 429, 75–84 (2005).

    Google Scholar 

  55. 55

    Mandelbaum, R., Seljak, U., Kauffmann, G., Hirata, C. M. & Brinkmann, J. Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the SDSS: stellar mass, luminosity, morphology, and environment dependencies. ArXiv Astrophys. e-prints 〈arXiv:astro-ph/0511164〉 (2005).

  56. 56

    Viel, M., Weller, J. & Haehnelt, M. G. Constraints on the primordial power spectrum from high-resolution Lyman α forest spectra and WMAP. Mon. Not. R. Astron. Soc. 355, L23–L28 (2004).

    ADS  CAS  Google Scholar 

  57. 57

    Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793–808 (2000).

    ADS  CAS  Google Scholar 

  58. 58

    Masjedi, M. et al. Very small-scale clustering and merger rate of luminous red galaxies. ArXiv Astrophys. e-prints 〈arXiv:astro-ph/0512166〉 (2005).

  59. 59

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

    ADS  Google Scholar 

  60. 60

    De Lucia, G., Springel, V., White, S. D. M., Croton, D. & Kauffmann, G. The formation history of elliptical galaxies. Mon. Not. R. Astron. Soc. 366, 499–509 (2006).

    ADS  Google Scholar 

  61. 61

    Giavalisco, M. et al. The angular clustering of Lyman-break galaxies at redshift z 3. Astrophys. J. 503, 543 (1998).

    ADS  Google Scholar 

  62. 62

    Adelberger, K. L. et al. A counts-in-cells analysis of Lyman-break galaxies at redshift z 3. Astrophys. J. 505, 18–24 (1998).

    ADS  Google Scholar 

  63. 63

    Mo, H. J. & Fukugita, M. Constraints on the cosmic structure formation models from early formation of giant galaxies. Astrophys. J. Lett. 467, L9 (1996).

    ADS  Google Scholar 

  64. 64

    Baugh, C. M., Cole, S., Frenk, C. S. & Lacey, C. G. The epoch of galaxy formation. Astrophys. J. 498, 504 (1998).

    ADS  Google Scholar 

  65. 65

    Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  66. 66

    Hoeflich, P., Wheeler, J. C. & Thielemann, F. K. Type Ia supernovae: influence of the initial composition on the nucleosynthesis, light curves, and spectra and consequences for the determination of Ωm and Λ. Astrophys. J. 495, 617 (1998).

    ADS  Google Scholar 

  67. 67

    Travaglio, C., Hillebrandt, W. & Reinecke, M. Metallicity effect in multi–dimensional SNIa nucleosynthesis. Astroparticle Phys. 443, 1007–1011 (2005).

    CAS  Google Scholar 

  68. 68

    Hamuy, M. et al. The absolute luminosities of the Calan/Tololo Type Ia supernovae. Astron. J. 112, 2391 (1996).

    ADS  Google Scholar 

  69. 69

    Gallagher, J. S. et al. Chemistry and star formation in the host galaxies of Type Ia supernovae. Astrophys. J. 634, 210–226 (2005).

    ADS  CAS  Google Scholar 

  70. 70

    Blanchard, A., Douspis, M., Rowan-Robinson, M. & Sarkar, S. An alternative to the cosmological ‘concordance model’. Astropart. Phys. 412, 35–44 (2003).

    MATH  Google Scholar 

  71. 71

    Chiang, L. -Y., Naselsky, P. D., Verkhodanov, O. V. & Way, M. J. Non-gaussianity of the derived maps from the First-year Wilkinson Microwave Anisotropy Probe data. Astrophys. J. Lett. 590, L65–L68 (2003).

    ADS  Google Scholar 

  72. 72

    Vielva, P., Martínez-González, E., Barreiro, R. B., Sanz, J. L. & Cayón, L. Detection of non-gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year data using spherical wavelets. Astrophys. J. 609, 22–34 (2004).

    ADS  CAS  Google Scholar 

  73. 73

    de Oliveira-Costa, A., Tegmark, M., Zaldarriaga, M. & Hamilton, A. Significance of the largest scale CMB fluctuations in WMAP. Phys. Rev. D 69, 063516 (2004).

    ADS  Google Scholar 

  74. 74

    Eriksen, H. K., Hansen, F. K., Banday, A. J., Górski, K. M. & Lilje, P. B. Asymmetries in the cosmic microwave background anisotropy field. Astrophys. J. 605, 14–20 (2004).

    ADS  CAS  Google Scholar 

  75. 75

    Land, K. & Magueijo, J. Examination of evidence for a preferred axis in the cosmic radiation anisotropy. Phys. Rev. Lett. 95, 071301 (2005).

    ADS  Google Scholar 

  76. 76

    Jaffe, T. R., Banday, A. J., Eriksen, H. K., Górski, K. M. & Hansen, F. K. Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy? Astrophys. J. Lett. 629, L1–L4 (2005).

    ADS  Google Scholar 

  77. 77

    Aharonian, F. et al. Very high energy gamma rays from the direction of Sagittarius A*. Astropart. Phys. 425, L13–L17 (2004).

    ADS  Google Scholar 

  78. 78

    Bergström, L., Ullio, P. & Buckley, J. H. Observability of gamma rays from dark matter neutralino annihilations in the Milky Way halo. Astropart. Phys. 9, 137–162 (1998).

    ADS  Google Scholar 

  79. 79

    Bekenstein, J. D. Relativistic gravitation theory for the modified newtonian dynamics paradigm. Phys. Rev. D 70, 083509 (2004).

    ADS  Google Scholar 

  80. 80

    Aguirre, A., Schaye, J. & Quataert, E. Problems for modified newtonian dynamics in clusters and the Ly-α forest? Astrophys. J. 561, 550–558 (2001).

    ADS  CAS  Google Scholar 

  81. 81

    Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).

    ADS  CAS  Google Scholar 

  82. 82

    Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. Lett. 524, L19–L22 (1999).

    ADS  CAS  Google Scholar 

  83. 83

    Navarro, J. F., Frenk, C. S. & White, S. D. M. A Universal density profile from hierarchical clustering. Astrophys. J. 490, 493 (1997).

    ADS  Google Scholar 

  84. 84

    de Blok, W. J. G., McGaugh, S. S., Bosma, A. & Rubin, V. C. Mass density profiles of low surface brightness galaxies. Astrophys. J. Lett. 552, L23–L26 (2001).

    ADS  Google Scholar 

  85. 85

    Hayashi, E. et al. The inner structure of ΛCDM haloes. II. Halo mass profiles and low surface brightness galaxy rotation curves. Mon. Not. R. Astron. Soc. 355, 794–812 (2004).

    ADS  Google Scholar 

  86. 86

    Bullock, J. S., Kravtsov, A. V. & Weinberg, D. H. Hierarchical galaxy formation and substructure in the Galaxy's stellar halo. Astrophys. J. 548, 33–46 (2001).

    ADS  Google Scholar 

  87. 87

    Benson, A. J., Frenk, C. S., Lacey, C. G., Baugh, C. M. & Cole, S. The effects of photoionization on galaxy formation. II. Satellite galaxies in the Local Group. Mon. Not. R. Astron. Soc. 333, 177–190 (2002).

    ADS  CAS  Google Scholar 

  88. 88

    Kochanek, C. S. & Dalal, N. Tests for substructure in gravitational lenses. Astrophys. J. 610, 69–79 (2004).

    ADS  Google Scholar 

  89. 89

    Oguri, M., Takada, M., Umetsu, K. & Broadhurst, T. Can the steep mass profile of A1689 be explained by a triaxial dark halo? Astrophys. J. 632, 841–846 (2005).

    ADS  CAS  Google Scholar 

  90. 90

    Pierce, A. Dark matter in the finely tuned minimal supersymmetric standard model. Phys. Rev. D 70, 075006 (2004).

    ADS  Google Scholar 

  91. 91

    Haiman, Z., Mohr, J. J. & Holder, G. P. Constraints on cosmological parameters from future galaxy cluster surveys. Astrophys. J. 553, 545–561 (2001).

    ADS  Google Scholar 

  92. 92

    Peebles, P. J. E. & Yu, J. T. Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815 (1970).

    ADS  Google Scholar 

  93. 93

    Cole, S. et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505–534 (2005).

    ADS  Google Scholar 

  94. 94

    Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005).

    ADS  Google Scholar 

  95. 95

    Huetsi, G. Acoustic oscillations in the SDSS DR4 Luminous Red Galaxy sample power spectrum. ArXiv Astrophys. e-prints 〈arXiv:astro-ph/0512201〉 (2005).

  96. 96

    Angulo, R. et al. Constraints on the dark energy equation of state from the imprint of baryons on the power spectrum of clusters. Mon. Not. R. Astron. Soc. 362, L25–L29 (2005).

    ADS  Google Scholar 

  97. 97

    Allen, B. Stochastic gravity-wave background in inflationary–universe models. Phys. Rev. D 37, 2078–2085 (1988).

    ADS  MathSciNet  CAS  Google Scholar 

  98. 98

    Lyth, D. H. What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys. Rev. Lett. 78, 1861–1863 (1997).

    ADS  CAS  Google Scholar 

  99. 99

    Boyle, L. A., Steinhardt, P. J. & Turok, N. Cosmic gravitational-wave background in a cyclic universe. Phys. Rev. D 69, 127302 (2004).

    ADS  Google Scholar 

  100. 100

    Gott, J. R. I. et al. A map of the Universe. Astrophys. J. 624, 463–484 (2005).

    ADS  Google Scholar 

  101. 101

    Evrard, A. E. et al. Galaxy clusters in Hubble volume simulations: cosmological constraints from sky survey populations. Astrophys. J. 573, 7–36 (2002).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank L. van Waerbeke for providing the data of Fig. 3, and R. Angulo for preparing Fig. 6.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Volker Springel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Springel, V., Frenk, C. & White, S. The large-scale structure of the Universe. Nature 440, 1137–1144 (2006). https://doi.org/10.1038/nature04805

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing