Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Cenozoic palaeoenvironment of the Arctic Ocean

Abstract

The history of the Arctic Ocean during the Cenozoic era (0–65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm ‘greenhouse’ world, during the late Palaeocene and early Eocene epochs, to a colder ‘icehouse’ world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent 14 Myr, we find sedimentation rates of 1–2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (3.2 Myr ago) and East Antarctic ice (14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at 49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiographic map of the Arctic Ocean.
Figure 2: Cross-section of the Lomonosov ridge.
Figure 3: Synthesis of the ACEX coring results.

Similar content being viewed by others

References

  1. Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278, 1582–1588 (1997)

    Article  CAS  ADS  Google Scholar 

  2. Holland, M. M., Bitz, C. M., Eby, M. & Weaver, A. J. The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Clim. 14, 656–675 (2001)

    Article  ADS  Google Scholar 

  3. Curry, R. & Mauritzen, C. Dilution of the northern North Atlantic Ocean in recent decades. Science 308, 1772–1773 (2005)

    Article  CAS  ADS  Google Scholar 

  4. Heezen, B. C. & Ewing, M. in Geology of the Arctic (ed. Raasch, G.) 622–642 (Univ. Toronto Press, Toronto, 1961)

    Google Scholar 

  5. Wilson, J. T. Hypothesis of the Earth's behaviour. Nature 198, 925–929 (1963)

    Article  ADS  Google Scholar 

  6. Vogt, P. R., Taylor, P. T., Kovacs, L. C. & Johnson, G. L. Detailed aeromagnetic investigation of the Arctic basin. J. Geophys. Res. 84, 1071–1089 (1979)

    Article  ADS  Google Scholar 

  7. Jokat, W., Uenzelmann-Neben, G., Kristoffersen, Y. & Rasmussen, T. ARCTIC'91: Lomonosov Ridge—a double sided continental margin. Geology 20, 887–890 (1992)

    Article  ADS  Google Scholar 

  8. Backman, J., Moran, K., McInroy, D. & the IODP Exp. 302 Scientists, IODP Expedition 302, Arctic Coring Expedition (ACEX): A first look at the Cenozoic paleoceanography of the central Arctic Ocean. Sci. Drilling. 1, 12–17 (2005)

    Article  ADS  Google Scholar 

  9. Backman, J., Jakobsson, M., Lovlie, R., Polyak, L. & Febo, L. A. Is the central Arctic Ocean a sediment starved basin? Quat. Sci. Rev. 23, 1435–1454 (2004)

    Article  ADS  Google Scholar 

  10. Houghton, J. T. et al. (eds) Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, Cambridge, UK, 2001)

  11. Backman, J. Arctic Detailed Planning Group (ADPG) final report. JOIDES J. 27–2, 18–27 (2001)

    Google Scholar 

  12. Wignall, P. B. Black Shales (Oxford Univ. Press, Oxford, UK, 1994)

    Google Scholar 

  13. Crouch, E. M. et al. Global dinoflagellate event associated with the late Palaeocene thermal maximum. Geology 29, 315–318 (2001)

    Article  CAS  ADS  Google Scholar 

  14. Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature doi:10.1038/nature04668 (this issue).

  15. Pagani, M. et al. Arctic's hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature (submitted).

  16. Backman, J., Moran, K., McInroy, D. B., Mayer, L. A. & the Expedition Scientists. Proc. IODP Exp. Rep. 302 (Integrated Ocean Drilling Program Management International, College Station, Texas, in the press)

  17. Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature doi:10.1038/nature04692 (this issue).

  18. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 607–623 (1984)

    Article  Google Scholar 

  19. Sloan, L. C. & Barron, E. J. Eocene climate model results: Quantitative comparison to paleoclimatic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 183–202 (1992)

    Article  Google Scholar 

  20. Tripati, A. & Elderfield, H. Deep-sea temperatures and circulation changes at the Paleocene-Eocene thermal maximum. Science 308, 1894–1898 (2005)

    Article  CAS  ADS  Google Scholar 

  21. Tripati, A., Zachos, J., Marincovich, L. Jr & Bice, K. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170, 101–113 (2001)

    Article  Google Scholar 

  22. Lawver, L. A., Grantz, A. & Gahagan, L. M. in Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses (eds Miller, E. L. A., Grantz, A. & Klemperer, S. L.) 333–358 (Special Paper 360, Geological Society of America, 2002)

    Book  Google Scholar 

  23. Knox, R. in Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records (eds Aubrey, M. P. et al.) 91–102 (Columbia Univ. Press, New York, 1998)

    Google Scholar 

  24. Sloan, L. C. & Rea, D. K. Atmospheric CO2 and Early Eocene climate: a general circulation study. Palaeogeogr. Palaeoclimatol. Palaeoecol 119, 275–292 (1995)

    Article  Google Scholar 

  25. Flower, B. P. & Kennett, J. P. Middle Miocene ocean-climate transition: high-resolution oxygen and carbon isotopic records from deep sea drilling project site 588A, southwest Pacific. Paleoceanography 8, 811–844 (1993)

    Article  ADS  Google Scholar 

  26. Driscoll, N. W. & Haug, G. H. A short circuit in thermohaline circulation: a cause for Northern Hemisphere glaciation? Science 282, 436–438 (1998)

    Article  CAS  ADS  Google Scholar 

  27. Polyak, L., Edwards, M. H., Coakley, B. J. & Jakobsson, M. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–456 (2001)

    Article  CAS  ADS  Google Scholar 

  28. Kristoffersen, Y. et al. Seabed erosion on the Lomonosov Ridge, central Arctic Ocean: A tale of deep draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion? Paleoceanography 19, 3006–3019, doi:10.1029/2003PA000985 (2004)

    Article  ADS  Google Scholar 

  29. Clark, D. L., Whitman, R. R., Morgan, K. A. & Mackay, S. D. Stratigraphy and glacial marine sediments of the Amerasian basin, central Arctic Ocean. Spec. Publ. Geol. Soc. Am. 181, 1–57 (1980)

    Google Scholar 

  30. Witte, W. K. & Kent, D. V. Revised magnetostratigraphies confirm low sedimentation rates in Arctic Ocean cores. Quat. Res. 29, 43–53 (1988)

    Article  Google Scholar 

  31. Nowaczyk, N. R. et al. Sedimentation rates in the Makarov Basin, central Arctic Ocean: a paleomagnetic and rock magnetic approach. Paleoceanography 16, 368–389 (2001)

    Article  ADS  Google Scholar 

  32. Einarson, T., Hopkins, D. M. & Doell, R. R. in The Bering Land Bridge (ed. Hopkins, D. M.) 312–325 (Stanford Univ. Press, Stanford, 1967)

    Google Scholar 

  33. Berggren, W. A., Kent, D. V., Swisher, C. C. III & Aubry, M.-P. in Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 129–212 (Spec. Publ., Soc. Sediment. Geol., Tulsa, 1995)

    Book  Google Scholar 

  34. Backman, J. Pliocene biostratigraphy of DSDP Sites 111 and 116 from the North Atlantic Ocean and the age of Northern Hemisphere glaciation. Stockholm Contrib. Geol. 32, 115–137 (1979)

    Google Scholar 

  35. Jansen, E., Fronval, T., Rack, F. & Channell, J. E. T. Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography 15, 709–721 (2000)

    Article  ADS  Google Scholar 

  36. Larsen, H. C. et al. Proc. ODP Init. Rep. 152 (Ocean Drilling Program, College Station, Texas, 1994)

    Google Scholar 

  37. Kleiven, H. F., Jansen, E., Fronval, T. & Smith, T. M. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)–ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 213–223 (2002)

    Article  Google Scholar 

  38. Winkler, A., Wolf-Welling, T. C. W., Stattegger, K. & Thiede, J. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG). Int. J. Earth Sci. 91, 133–148 (2002)

    Article  CAS  Google Scholar 

  39. Lear, C. H., Elderfield, P. A. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)

    Article  CAS  ADS  Google Scholar 

  40. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  CAS  ADS  Google Scholar 

  41. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005)

    Article  CAS  ADS  Google Scholar 

  42. Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B. & Macnab, R. A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers. Eos 81(9), 89, 93, 96 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the IODP European Science Operator (ESO), led by the British Geological Survey; the Swedish Polar Research Secretariat, who provided shiptime for Oden as well as the ice and fleet management; icebreaker Captains Årnell, Backman, Davidjan, Haave, Shirley, Smith and Vikström, and the crews of Oden, Vidar Viking and Sovetskiy Soyuz; and Seacore Ltd, who provided the drilling services. This research used samples and data provided by the Integrated Ocean Drilling Program. Author Contributions J.B. was the lead investigator on the ACEX proposal to IODP. K.M. and J.B. conducted much of the project planning with support from J.F. J.B. and K.M. led the expedition. Ship- and shore-based core analyses were conducted by the IODP 302 science party (H.B., S.C.C., T.C., G.R.D., F.E., J.G., M.J., R.W.J., M.K., J.K., N.K., A.K., N.M., J.M., T.C.M., D.M., J.O., M.O., H.P., B.R., D.R., T.S., D.C.S., R.S., K.S., I.S., N.S., K.T., M.W. and M.Y.). Additional sediment analyses were conducted by M.F. and P.K. Geophysical data were collected and analysed by W.J. and Y.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Moran.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, K., Backman, J., Brinkhuis, H. et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441, 601–605 (2006). https://doi.org/10.1038/nature04800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04800

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing