Abstract
The history of the Arctic Ocean during the Cenozoic era (0–65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm ‘greenhouse’ world, during the late Palaeocene and early Eocene epochs, to a colder ‘icehouse’ world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent ∼14 Myr, we find sedimentation rates of 1–2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (∼3.2 Myr ago) and East Antarctic ice (∼14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (∼45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at ∼49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (∼55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Large obliquity-paced Antarctic ice-volume fluctuations suggest melting by atmospheric and ocean warming during late Oligocene
Communications Earth & Environment Open Access 22 June 2023
-
Opening of the Fram Strait led to the establishment of a modern-like three-layer stratification in the Arctic Ocean during the Miocene
arktos Open Access 24 January 2021
-
Late Quaternary sedimentation dynamics in the Beenchime-Salaatinsky Crater, Northern Yakutia
arktos Open Access 28 July 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278, 1582–1588 (1997)
Holland, M. M., Bitz, C. M., Eby, M. & Weaver, A. J. The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Clim. 14, 656–675 (2001)
Curry, R. & Mauritzen, C. Dilution of the northern North Atlantic Ocean in recent decades. Science 308, 1772–1773 (2005)
Heezen, B. C. & Ewing, M. in Geology of the Arctic (ed. Raasch, G.) 622–642 (Univ. Toronto Press, Toronto, 1961)
Wilson, J. T. Hypothesis of the Earth's behaviour. Nature 198, 925–929 (1963)
Vogt, P. R., Taylor, P. T., Kovacs, L. C. & Johnson, G. L. Detailed aeromagnetic investigation of the Arctic basin. J. Geophys. Res. 84, 1071–1089 (1979)
Jokat, W., Uenzelmann-Neben, G., Kristoffersen, Y. & Rasmussen, T. ARCTIC'91: Lomonosov Ridge—a double sided continental margin. Geology 20, 887–890 (1992)
Backman, J., Moran, K., McInroy, D. & the IODP Exp. 302 Scientists, IODP Expedition 302, Arctic Coring Expedition (ACEX): A first look at the Cenozoic paleoceanography of the central Arctic Ocean. Sci. Drilling. 1, 12–17 (2005)
Backman, J., Jakobsson, M., Lovlie, R., Polyak, L. & Febo, L. A. Is the central Arctic Ocean a sediment starved basin? Quat. Sci. Rev. 23, 1435–1454 (2004)
Houghton, J. T. et al. (eds) Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, Cambridge, UK, 2001)
Backman, J. Arctic Detailed Planning Group (ADPG) final report. JOIDES J. 27–2, 18–27 (2001)
Wignall, P. B. Black Shales (Oxford Univ. Press, Oxford, UK, 1994)
Crouch, E. M. et al. Global dinoflagellate event associated with the late Palaeocene thermal maximum. Geology 29, 315–318 (2001)
Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature doi:10.1038/nature04668 (this issue).
Pagani, M. et al. Arctic's hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature (submitted).
Backman, J., Moran, K., McInroy, D. B., Mayer, L. A. & the Expedition Scientists. Proc. IODP Exp. Rep. 302 (Integrated Ocean Drilling Program Management International, College Station, Texas, in the press)
Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature doi:10.1038/nature04692 (this issue).
Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 607–623 (1984)
Sloan, L. C. & Barron, E. J. Eocene climate model results: Quantitative comparison to paleoclimatic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 183–202 (1992)
Tripati, A. & Elderfield, H. Deep-sea temperatures and circulation changes at the Paleocene-Eocene thermal maximum. Science 308, 1894–1898 (2005)
Tripati, A., Zachos, J., Marincovich, L. Jr & Bice, K. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170, 101–113 (2001)
Lawver, L. A., Grantz, A. & Gahagan, L. M. in Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses (eds Miller, E. L. A., Grantz, A. & Klemperer, S. L.) 333–358 (Special Paper 360, Geological Society of America, 2002)
Knox, R. in Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records (eds Aubrey, M. P. et al.) 91–102 (Columbia Univ. Press, New York, 1998)
Sloan, L. C. & Rea, D. K. Atmospheric CO2 and Early Eocene climate: a general circulation study. Palaeogeogr. Palaeoclimatol. Palaeoecol 119, 275–292 (1995)
Flower, B. P. & Kennett, J. P. Middle Miocene ocean-climate transition: high-resolution oxygen and carbon isotopic records from deep sea drilling project site 588A, southwest Pacific. Paleoceanography 8, 811–844 (1993)
Driscoll, N. W. & Haug, G. H. A short circuit in thermohaline circulation: a cause for Northern Hemisphere glaciation? Science 282, 436–438 (1998)
Polyak, L., Edwards, M. H., Coakley, B. J. & Jakobsson, M. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–456 (2001)
Kristoffersen, Y. et al. Seabed erosion on the Lomonosov Ridge, central Arctic Ocean: A tale of deep draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion? Paleoceanography 19, 3006–3019, doi:10.1029/2003PA000985 (2004)
Clark, D. L., Whitman, R. R., Morgan, K. A. & Mackay, S. D. Stratigraphy and glacial marine sediments of the Amerasian basin, central Arctic Ocean. Spec. Publ. Geol. Soc. Am. 181, 1–57 (1980)
Witte, W. K. & Kent, D. V. Revised magnetostratigraphies confirm low sedimentation rates in Arctic Ocean cores. Quat. Res. 29, 43–53 (1988)
Nowaczyk, N. R. et al. Sedimentation rates in the Makarov Basin, central Arctic Ocean: a paleomagnetic and rock magnetic approach. Paleoceanography 16, 368–389 (2001)
Einarson, T., Hopkins, D. M. & Doell, R. R. in The Bering Land Bridge (ed. Hopkins, D. M.) 312–325 (Stanford Univ. Press, Stanford, 1967)
Berggren, W. A., Kent, D. V., Swisher, C. C. III & Aubry, M.-P. in Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 129–212 (Spec. Publ., Soc. Sediment. Geol., Tulsa, 1995)
Backman, J. Pliocene biostratigraphy of DSDP Sites 111 and 116 from the North Atlantic Ocean and the age of Northern Hemisphere glaciation. Stockholm Contrib. Geol. 32, 115–137 (1979)
Jansen, E., Fronval, T., Rack, F. & Channell, J. E. T. Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography 15, 709–721 (2000)
Larsen, H. C. et al. Proc. ODP Init. Rep. 152 (Ocean Drilling Program, College Station, Texas, 1994)
Kleiven, H. F., Jansen, E., Fronval, T. & Smith, T. M. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)–ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 213–223 (2002)
Winkler, A., Wolf-Welling, T. C. W., Stattegger, K. & Thiede, J. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG). Int. J. Earth Sci. 91, 133–148 (2002)
Lear, C. H., Elderfield, P. A. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)
Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005)
Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B. & Macnab, R. A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers. Eos 81(9), 89, 93, 96 (2000)
Acknowledgements
We thank the IODP European Science Operator (ESO), led by the British Geological Survey; the Swedish Polar Research Secretariat, who provided shiptime for Oden as well as the ice and fleet management; icebreaker Captains Årnell, Backman, Davidjan, Haave, Shirley, Smith and Vikström, and the crews of Oden, Vidar Viking and Sovetskiy Soyuz; and Seacore Ltd, who provided the drilling services. This research used samples and data provided by the Integrated Ocean Drilling Program. Author Contributions J.B. was the lead investigator on the ACEX proposal to IODP. K.M. and J.B. conducted much of the project planning with support from J.F. J.B. and K.M. led the expedition. Ship- and shore-based core analyses were conducted by the IODP 302 science party (H.B., S.C.C., T.C., G.R.D., F.E., J.G., M.J., R.W.J., M.K., J.K., N.K., A.K., N.M., J.M., T.C.M., D.M., J.O., M.O., H.P., B.R., D.R., T.S., D.C.S., R.S., K.S., I.S., N.S., K.T., M.W. and M.Y.). Additional sediment analyses were conducted by M.F. and P.K. Geophysical data were collected and analysed by W.J. and Y.K.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Moran, K., Backman, J., Brinkhuis, H. et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441, 601–605 (2006). https://doi.org/10.1038/nature04800
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature04800
This article is cited by
-
Large obliquity-paced Antarctic ice-volume fluctuations suggest melting by atmospheric and ocean warming during late Oligocene
Communications Earth & Environment (2023)
-
Opening of the Fram Strait led to the establishment of a modern-like three-layer stratification in the Arctic Ocean during the Miocene
arktos (2021)
-
Freshwater Mollusca of the Circumpolar Arctic: a review on their taxonomy, diversity and biogeography
Hydrobiologia (2021)
-
Late Quaternary sedimentation dynamics in the Beenchime-Salaatinsky Crater, Northern Yakutia
arktos (2020)
-
Limited freshwater cap in the Eocene Arctic Ocean
Scientific Reports (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.