Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seawater subduction controls the heavy noble gas composition of the mantle

Abstract

The relationship between solar volatiles and those now in the Earth's atmosphere and mantle reservoirs provides insight into the processes controlling the acquisition of volatiles during planetary accretion and their subsequent evolution. Whereas the light noble gases (helium and neon) in the Earth's mantle preserve a solar-like isotopic composition, heavy noble gases (argon, krypton and xenon) have an isotopic composition very similar to that of the modern atmosphere, with radiogenic and (in the case of xenon) solar contributions. Mantle noble gases in a magmatic CO2 natural gas field have been previously corrected for shallow atmosphere/groundwater and crustal additions. Here we analyse new data from this field and show that the elemental composition of non-radiogenic heavy noble gases in the mantle is remarkably similar to that of sea water. We challenge the popular concept of a noble gas ‘subduction barrier’—the convecting mantle noble gas isotopic and elemental composition is explained by subduction of sediment and seawater-dominated pore fluids. This accounts for 100% of the non-radiogenic argon and krypton and 80% of the xenon. Approximately 50% of the convecting mantle water concentration can then be explained by this mechanism. Enhanced recycling of subducted material to the mantle plume source region then accounts for the lower ratio of radiogenic to non-radiogenic heavy noble gas isotopes and higher water content of plume-derived basalts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The intersection of the Bravo Dome Xe array with the MORB (mid-ocean-ridge basalt) array defines the Xe mantle composition.
Figure 2: Non-radiogenic Xe data reveal contribution from a primordial component.
Figure 3: Correlation of measured 20 Ne/ 22 Ne, 21 Ne/ 22 Ne with 130 Xe/ 22 Ne.
Figure 4: Mantle noble gas isotopes relative to 36 Ar normalized to the solar abundance.

Similar content being viewed by others

References

  1. Lupton, J. E. & Craig, H. Excess 3He in oceanic basalts, evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 26, 133–139 (1975)

    Article  ADS  CAS  Google Scholar 

  2. Honda, M., Reynolds, J. H., Roedder, E. & Epstein, S. Noble gases in diamonds: occurrences of solar like helium and neon. J. Geophys. Res. 92, 12507–12521 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Sarda, P., Staudacher, T. & Allegre, C. J. Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73–88 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Ballentine, C. J., Sherwood Lollar, B., Marty, B. & Cassidy, M. Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature 433, 33–38 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Caffee, M. W. et al. Primordial noble gases from Earth's mantle: identification of a primitive volatile component. Science 285, 2115–2118 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Staudacher, T. & Allegre, C. J. Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet. Sci. Lett. 89, 173–183 (1988)

    Article  ADS  CAS  Google Scholar 

  7. Kent, A. J. R. et al. Widespread assimilation of a sea-water-derived component at Loihi Seamount, Hawaii. Geochim. Cosmochim. Acta 63, 2749–2761 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Kent, A. J. R., Norman, M. D., Hutcheon, I. D. & Stolper, E. M. Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem. Geol. 156, 299–319 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002)

    Article  CAS  Google Scholar 

  10. Kunz, J. Is there solar argon in the Earth's mantle? Nature 399, 649–650 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Trieloff, M., Kunz, J. & Allegre, C. J. Noble gas systematics of the Reunion mantle plume source and the origin of primordial noble gases in Earth's mantle. Earth Planet. Sci. Lett. 200, 297–313 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Porcelli, D. & Wasserburg, G. J. Mass transfer of xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 1991–2007 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Porcelli, D. & Wasserburg, G. J. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 4921–4937 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Ballentine, C. J. & Barfod, D. N. The origin of air-like noble gases in MORB and OIB. Earth Planet. Sci. Lett. 180, 39–48 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Harrison, D., Burnard, P. G., Trieloff, M. & Turner, G. Resolving atmospheric contaminants in mantle noble gas analyses. Geochem. Geophys. Geosyst. 4, art. no. 1023, doi:10.1029/2002GC000325 (2003).

  16. Sarda, P. & Guillot, B. Breaking of Henry's law for noble gas and CO2 solubility in silicate melt under pressure. Nature 436, 95–98 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sarda, P. & Graham, D. Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett. 97, 268–289 (1990)

    Article  ADS  CAS  Google Scholar 

  18. Burnard, P., Graham, D. & Turner, G. Vesicle specific noble gas analyses of popping rock: implications for primordial noble gases in Earth. Science 276, 568–571 (1997)

    Article  CAS  PubMed  Google Scholar 

  19. Moreira, M., Kunz, J. & Allegre, C. J. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Matsuda, J. & Nagao, K. Noble gas abundances in a deep-sea sediment core from eastern equatorial Pacific. Geochem. J. 20, 71–80 (1986)

    Article  CAS  Google Scholar 

  21. Thompson, A. B. Water in the Earth's upper mantle. Nature 358, 295–302 (1992)

    Article  ADS  CAS  Google Scholar 

  22. Symons, K., Dixon, J., Schilling, J. G., Kingsley, R. & Poreda, R. Volatiles in basaltic glasses from the Easter–Salas y Gomez Seamount Chain and Easter Microplate: implications for geochemical cycling of volatile elements. Geochem. Geophys. Geosyst. 3, doi:10.1029/2001GC000173 (2002)

  23. Robert, F., Gautier, D. & Dubrulle, B. The solar system D/H ratio: observations and theories. Space Sci. Rev. 92, 201–224 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Matsumoto, T., Chen, Y. L. & Matsuda, J. Concomitant occurrence of primordial and recycled noble gases in the Earth. Earth Planet. Sci. Lett. 188, 211–219 (2001)

    Article  ADS  Google Scholar 

  25. Sarda, P., Moreira, M. & Staudacher, T. Argon–lead isotopic correlation in Mid-Atlantic ridge basalts. Science 283, 666–668 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Bach, W. & Niedermann, S. Atmospheric noble gases in volcanic glasses from the southern Lau basin: origin from the subducting slab? Earth Planet. Sci. Lett. 160, 297–309 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Sarda, P., Moreira, M., Staudacher, T., Schilling, J. G. & Allegre, C. J. Rare gas systematics on the southernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupal source. J. Geophys. Res. Solid Earth 105, 5973–5996 (2000)

    Article  CAS  Google Scholar 

  28. Hilton, D. R., Hammerschmidt, K., Loock, G. & Friedrichsen, H. Helium and argon isotope systematics of the central Lau Basin and Valu Fa ridge: evidence of crust–mantle interactions in a back-arc basin. Geochim. Cosmochim. Acta 57, 2819–2841 (1993)

    Article  ADS  CAS  Google Scholar 

  29. Hilton, D. R., Fischer, T. P. & Marty, B. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002)

    Article  CAS  Google Scholar 

  30. Allegre, C. J., Staudacher, T. & Sarda, P. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987)

    Article  ADS  CAS  Google Scholar 

  31. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    Article  ADS  CAS  Google Scholar 

  32. Van Keken, P. E., Ballentine, C. J. & Hauri, E. in Treatise on Geochemistry: The Mantle and Core (ed. Carlson, R. W.) 471–491 (Elsevier Pergamon, Oxford, 2003)

    Google Scholar 

  33. Patterson, D. B., Honda, M. & McDougall, I. Atmospheric contamination—a possible source for heavy noble gases in basalts from Loihi Seamount, Hawaii. Geophys. Res. Lett. 17, 705–708 (1990)

    Article  ADS  Google Scholar 

  34. Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. & Allegre, C. J. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Farley, K. A. & Craig, H. Atmospheric argon contamination of ocean island basalt olivine phenocrysts. Geochim. Cosmochim. Acta 58, 2509–2517 (1994)

    Article  ADS  CAS  Google Scholar 

  36. Burnard, P. G., Farley, K. A. & Turner, G. Multiple fluid pulses in a Samoan harzburgite. Chem. Geol. 147, 99–114 (1998)

    Article  ADS  CAS  Google Scholar 

  37. Harrison, D., Burnard, P. & Turner, G. Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet. Sci. Lett. 171, 199–207 (1999)

    Article  ADS  CAS  Google Scholar 

  38. Kunz, J., Staudacher, T. & Allegre, C. J. Plutonium-fission xenon found in Earth's mantle. Science 280, 877–880 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Kingsley, R. H. et al. D/H ratios in basalt glasses from the Salas y Gomez mantle plume interacting with the East Pacific Rise: water from old D-rich recycled crust or primordial water from the lower mantle? Geochem. Geophys. Geosyst. 3, doi:10.1029/2001GC000199 (2002)

  40. Poreda, R., Schilling, J. G. & Craig, H. Helium and hydrogen isotopes in ocean-ridge basalts north and south of Iceland. Earth Planet. Sci. Lett. 78, 1–17 (1986)

    Article  ADS  CAS  Google Scholar 

  41. Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002)

    Article  ADS  CAS  Google Scholar 

  42. Dixon, J. E. & Clague, D. A. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component. J. Petrol. 42, 627–654 (2001)

    Article  ADS  CAS  Google Scholar 

  43. Ballentine, C. J., Van Keken, P. E., Porcelli, D. & Hauri, E. H. Numerical models, geochemistry and the zero-paradox noble-gas mantle. Phil. Trans. R. Soc. Lond. A 360, 2611–2631 (2002)

    Article  ADS  CAS  Google Scholar 

  44. Ellam, R. M. & Stuart, F. M. Coherent He-Nd-Sr isotope trends in high 3He/4He basalts: implications for a common reservoir, mantle heterogeneity and convection. Earth Planet. Sci. Lett. 228, 511–523 (2004)

    Article  ADS  CAS  Google Scholar 

  45. Tolstikhin, I. & Hofmann, A. W. Early crust on top of the Earth's core. Phys. Earth. Planet. Inter. 148, 109–130 (2004)

    Article  ADS  Google Scholar 

  46. Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth's mantle. Nature 436, 1107–1112 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Ballentine, C. J., Van Keken, P. E., Holland, G., Hauri, E. H. & Brandenburg, J. P. Recycling volatiles and attaining a geochemical and fluid dynamically consistent model of mantle convection. Eos 86 (52), Fall Meet. Suppl., Abstr. V53F-01 (2005); at http://www.agu.org/meetings/fm05/fm05-sessions/fm05_V53F.html (2005).

  48. York, D. Least squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett. 5, 320–324 (1969)

    Article  ADS  CAS  Google Scholar 

  49. Ott, U. Noble gases in meteorites—trapped components. Rev. Mineral. Geochem. 47, 71–100 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Oxy for permission to sample the Bravo Dome Field, Amerada Hess for permission to sample West Bravo Dome, and M. Cassidy for logistics and field assistance. We thank D. Blagburn and B. Clementson for laboratory support. We also thank J. Gilmour for provision of the error weighted plane fitting software, S. Gilfillan for air calibration work and D. Hilton for comments on the manuscript. This work was funded by NERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Holland.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

A file containing equations for plane fit data and discussion of mantle Ne isotopic composition. (DOC 33 kb)

Supplementary Figures

Supplementary Figures 1–3. Supplementary Figure 1 is three Ne isotope plot. Supplementary Figure 2a-d are 3-D isotope plots 3He/22Ne v 20Ne/22Ne v 21Ne/22Ne is 36Ar/22Ne v 20Ne/22Ne v 21Ne/22Ne, 40Ar/22Ne v 20Ne/22Ne v 21Ne/22Ne and 84Kr/22Ne v 20Ne/22Ne v 21Ne/22Ne. Supplementary Figure 3 shows addition of sediment to seawater generates Bravo Dome composition. (DOC 1973 kb)

Supplementary Tables

Supplementary Tables 1–3. Supplementary Table 1 contains mantle elemental ratios using different methods. Supplementary Table 2 contains Sheep Mountain Xe data. Supplementary Table 3 contains McElmo Dome Xe data. (DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, G., Ballentine, C. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006). https://doi.org/10.1038/nature04761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04761

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing