Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic detection of folded, subducted lithosphere at the core–mantle boundary

Abstract

Seismic tomography has been used to infer that some descending slabs of oceanic lithosphere plunge deep into the Earth's lower mantle1,2. The fate of these slabs has remained unresolved, but it has been postulated that their ultimate destination is the lowermost few hundred kilometres of the mantle, known as the D″ region. Relatively cold slab material may account for high seismic velocities imaged in D″ beneath areas of long-lived plate subduction, and for reflections from a seismic velocity discontinuity just above the anomalously high wave speed regions3,4. The D″ discontinuity itself is probably the result of a phase change in relatively low-temperature magnesium silicate perovskite5,6. Here, we present images of the D″ region beneath the Cocos plate using Kirchhoff migration of horizontally polarized shear waves, and find a 100-km vertical step occurring over less than 100 km laterally in an otherwise flat D″ shear velocity discontinuity. Folding and piling of a cold slab that has reached the core–mantle boundary, as observed in numerical and experimental models, can account for the step by a 100-km elevation of the post-perovskite phase boundary due to a 700 °C lateral temperature reduction in the folded slab. We detect localized low velocities at the edge of the slab material, which may result from upwellings caused by the slab laterally displacing a thin hot thermal boundary layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map showing earthquake epicentres (black stars), seismic station locations (red triangles) and ScS reflection points (blue dots).
Figure 2: Vertical cross-sections through the scattering image volume for our data set migrated in the PREM model using ScS as the reference phase.
Figure 3: Vertical cross-sections along profile A-A′ through the image volume migrated relative to ScS using four different velocity models.
Figure 4: A cold buckled subducted slab (blue) in the lowermost mantle may account for the thermal structure that results in a step in the perovskite/post-perovskite phase transition.

Similar content being viewed by others

References

  1. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, 1–7 (1997)

    Google Scholar 

  2. Grand, S. P. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A 360, 2475–2491 (2002)

    Article  ADS  Google Scholar 

  3. Lay, T. & Garnero, E. J. in The State of the Planet: Frontiers and Challenges in Geophysics (eds Sparks, R. S. J. & Hawkesworth, C. J.) 25–41 (Geophysical Monograph 150, American Geophysical Union, Washington DC, 2004)

    Book  Google Scholar 

  4. Wysession, M. E., et al. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 273–298 (Geodynamics Series 28, American Geophysical Union, Washington DC, 1998)

    Book  Google Scholar 

  5. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3 . Science 304, 855–858 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Lay, T. et al. Multidisciplinary impact of the deep mantle phase transition in perovskite structure. Eos 86, 1, 5 (2005)

    Article  ADS  Google Scholar 

  7. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. M. in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, (eds Karato, S., Forte, A. M., Liebermann, R. C., Masters, G. & Stixrude, L.) 63–87 (American Geophysical Union, Washington DC, 2000)

    Book  Google Scholar 

  8. Wen, L., Silver, P., James, D. & Kuehnel, R. Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle. Earth Planet. Sci. Lett. 189, 141–153 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Ni, S. & Helmberger, D. V. Ridge-like lower mantle structure beneath South Africa. J. Geophys. Res. 108, doi:10.1029/2001JB001545 (2003)

  10. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer. Nature 430, 445–448 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Lay, T., Garnero, E. J. & Russell, S. A. Lateral variation of the D” discontinuity beneath the Cocos Plate. Geophys. Res. Lett. 31, doi: 10.1029/2004GL020300 (2004)

  12. Reasoner, C. & Revenaugh, J. Short-period P wave constraints on D″ reflectivity. J. Geophys. Res. 104, 955–961 (1999)

    Article  ADS  Google Scholar 

  13. Thomas, C., Garnero, E. J. & Lay, T. High-resolution imaging of lowermost mantle structure under the Cocos Plate. J. Geophys. Res. 109, doi: 10.1029/2004JB003013 (2004)

  14. Ding, X. & Helmberger, D. V. Modeling D″ structure beneath Central America with broadband seismic data. Phys. Earth Planet. Inter. 101, 245–270 (1997)

    Article  ADS  Google Scholar 

  15. Rokosky, J. M., Lay, T., Garnero, E. J. & Russell, S. A. High-resolution investigation of shear wave anisotropy in D″ beneath the Cocos Plate. Geophys. Res. Lett. 31, L07605, doi: 10.1029/2003GL018902 (2004)

    Article  ADS  Google Scholar 

  16. Lay, T. & Young, C. J. Imaging scattering structures in the lower mantle by migration of long-period S waves. J. Geophys. Res. 101, 20023–20040 (1996)

    Article  ADS  Google Scholar 

  17. Revenaugh, J. A scattered-wave image of subduction beneath the Transverse Ranges, California. Science 268, 1888–1892 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Thomas, C., Weber, M., Wicks, C. W. & Scherbaum, F. Small scatterers in the lower mantle observed at German broadband arrays. J. Geophys. Res. 104, 15073–15088 (1999)

    Article  ADS  Google Scholar 

  19. Kito, T., Krüger, F. & Negishi, H. Seismic heterogeneous structure in the lowermost mantle beneath the southwestern Pacific. J. Geophys. Res. 109, B09304, doi: 10.1029/2003JB002677 (2004)

    Article  ADS  Google Scholar 

  20. Lay, T. & Helmberger, D. V. A lower mantle S-wave triplication and the shear velocity structure of D. Geophys. J. R. Astron. Soc. 75, 799–837 (1983)

    Article  ADS  Google Scholar 

  21. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  22. Megnin, C. & Romanowicz, B. The three-dimensional shear velocity structure of the mantle from the joint inversion of body, surface, and higher mode waveforms. Geophys. J. Int. 143, 709–728 (2000)

    Article  ADS  Google Scholar 

  23. Ritsema, J. & Van Heijst, H. J. Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow. Sci. Prog. (New Haven) 83, 243–259 (2000)

    Google Scholar 

  24. Hung, S.-H., Garnero, E. J., Chiao, L.-Y., Kuo, B.-Y. & Lay, T. Finite-frequency tomography of D″ shear velocity heterogeneity beneath the Caribbean. J. Geophys. Res. 110, B07305, doi: 10.1029/2004JB003373 (2005)

    Article  ADS  Google Scholar 

  25. Tan, E., Gurnis, M. & Han, L. Slabs in the lower mantle and their modulation of plume formation. Geochem. Geophys. Geosyst. 3, 1067, doi: 10.1029/2001GC000238 (2002)

    Article  ADS  Google Scholar 

  26. Hernlund, J. W., Thomas, C. & Tackley, P. J. A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle. Nature 434, 882–886 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Flores, C. & Lay, T. The trouble with seeing double. Geophys. Res. Lett. 32, L24305, doi: 10.1029/2005GL024366 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Thorne provided three-dimensional finite difference synthetics for versions of our step discontinuity structure. We also thank Q. Williams for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. Hutko.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–12. (PDF 8109 kb)

Supplementary Figure Legends

This file contains legends to accompany the above Supplementary Figures. (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutko, A., Lay, T., Garnero, E. et al. Seismic detection of folded, subducted lithosphere at the core–mantle boundary. Nature 441, 333–336 (2006). https://doi.org/10.1038/nature04757

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04757

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing