Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Suppression of dwarf galaxy formation by cosmic reionization

Abstract

A large number of faint galaxies, born less than a billion years after the Big Bang, have recently been discovered1,2,3,4,5,6. Fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of megaparsecs, as observed along the lines of sight to the earliest known quasars7,8,9. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized10,11,12,13, leading to a drop in the cosmic star-formation rate14. Here we report evidence for this suppression. We show that the post-reionization galaxies that produced most of the ionizing radiation at a redshift z ≈ 5.5 must have had a mass in excess of 1010.9 ± 0.5 solar masses (M) or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (108M). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, before the epoch of dwarf galaxy suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constraints on the star-formation efficiency ( fstar), duty cycle ( tlt/tH) and minimum virial temperature ( Tmin) of galaxies at z ≈ 5.5–6.

Similar content being viewed by others

References

  1. Rhoads, J. E. & Malhotra, S. Lyα emitters at z = 5.7. Astrophys. J. Lett. 563, 5–8 (2001)

    Article  ADS  Google Scholar 

  2. Shimasaku, K. et al. Subaru Deep Survey. IV. Discovery of a large-scale structure at redshift 5. Astrophys. J. Lett. 586, 111–114 (2003)

    Article  ADS  Google Scholar 

  3. Bouwens, R. J. et al. Galaxies at z = 7–8: z850-dropouts in the Hubble Ultra Deep Field. Astrophys. J. Lett. 616, 79–82 (2004)

    Article  ADS  Google Scholar 

  4. Bouwens, R. J., Illingworth, G. D., Blakeslee, J. P. & Franx, M. Galaxies at z6: The rest-frame UV luminosity function and luminosity density from 506 UDF, UDF-PS, and goods I-dropouts. Preprint at http://arXiv.org/astro-ph/0509641 (2005).

  5. Ouchi, M. et al. Subaru Deep Survey. VI. A census of Lyman break galaxies at z = 4 and 5 in the Subaru deep fields: Clustering properties. Astrophys. J. 611, 685–702 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Stark, D. P. & Ellis, M. Searching for the sources responsible for cosmic reionization: Probing the redshift range 7 < z < 10 and beyond. Preprint at http://arXiv.org/astro-ph/0508123 (2005).

  7. Djorgovski, S. G. in Proc. Tenth Marcel Grossmann Meeting on General Relativity (eds Novello, M., Perez-Bergliaffa, S. & Ruffini, R.) (World Scientific, Singapore, in the press); preprint at http://arXiv.org/astro-ph/0409378 (2004)

    Google Scholar 

  8. Djorgovski, S. G., Bogosavljevic, M. & Mahabal, A. Quasars as probes of late reionization and early structure formation. New Astron. Rev. 50, 140–145 (2006)

    Article  ADS  Google Scholar 

  9. Fan, X. et al. Constraining the evolution of the ionizing background and the epoch of reionization with z6 quasars. II: Analysis using a sample of 19 quasars. Preprint at http://arXiv.org/astro-ph/0512082 (2005).

  10. Efstathiou, G. Suppressing the formation of dwarf galaxies via photoionization. Mon. Not. R. Astron. Soc. 256, 43–47 (1992)

    Article  ADS  Google Scholar 

  11. Quinn, T., Katz, N. & Efstathiou, G. Photoionization and the formation of dwarf galaxies. Mon. Not. R. Astron. Soc. 278, L49–L54 (1996)

    Article  ADS  Google Scholar 

  12. Thoul, A. A. & Weinberg, D. H. Hydrodynamic simulations of galaxy formation. II. Photoionization and the formation of low-mass galaxies. Astrophys. J. 465, 608–616 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Dijkstra, M., Haiman, Z., Rees, M. J. & Weinberg, D. H. Photoionization feedback in low-mass galaxies at high redshift. Astrophys. J. 601, 666–675 (2004)

    Article  ADS  Google Scholar 

  14. Barkana, R. & Loeb, A. Identifying the reionization redshift from the cosmic star formation rate. Astrophys. J. 539, 20–25 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey III: Discovery of five additional quasars. Astron. J. (in the press); preprint at http://arXiv.org/astro-ph/0405138 (2005)

  16. Pentericci, L. et al. VLT optical and near-infrared observations of the z = 6.28 quasar SDSS J1030 + 0524. Astron. J. 123, 2151–2158 (2002)

    Article  ADS  CAS  Google Scholar 

  17. White, R. L., Becker, R. H., Fan, X. & Strauss, M. A. Probing the ionization state of the Universe at z > 6. Astron. J. 126, 1–14 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Wyithe, J. S. B. & Loeb, A. A large neutral fraction of cosmic hydrogen a billion years after the Big Bang. Nature 427, 815–817 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Rhoads, J. E. et al. Spectroscopic confirmation of three redshift z = 5.7 Lyα emitters from the large-area Lyman alpha survey. Astron. J. 125, 1006–1013 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Bunker, A., Stanway, E., Ellis, R. & McMahon, R. G. The star formation rate of the Universe at z6 from the Hubble Ultra-Deep Field. Mon. Not. R. Astron. Soc. 355, 374–384 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Ellis, R., Santos, M., Kneib, J.-P. & Kuijken, K. A faint star-forming system viewed through the lensing cluster Abell 2218: First light at z5.6? Astrophys. J. Lett. 560, 119–122 (2001)

    Article  ADS  Google Scholar 

  22. Santos, M., Ellis, R., Kneib, J.-P., Richard, J. & Kuijken, K. The abundance of low-luminosity Lyα emitter at high redshift. Astrophys. J. 606, 683–701 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Kneib, J.-P., Ellis, R. S., Santos, M. R. & Richard, J. A probable z7 galaxy strongly lensed by the rich cluster A2218: Exploring the Dark Ages. Astrophys. J. 607, 697–703 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Loeb, A., Barkana, R. & Hernquist, L. Was the Universe reionized at redshift 10? Astrophys. J. 620, 553–558 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Sheth, R. K., Mo, H. J. & Tormen, G. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon. Not. R. Astron. Soc. 323, 1–12 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Leitherer, C. et al. Starburst99: Synthesis models for galaxies with active star formation. Astrophys. J. Suppl. 123, 3–40 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Wyithe, J. S. B. & Loeb, A. Cosmic variance in the transparency of the intergalactic medium after reionization. Preprint at http://arXiv.org/astro-ph/0508604 (2006).

  28. Barkana, R. & Loeb, A. Unusually large fluctuations in the statistics of galaxy formation at high redshift. Astrophys. J. 609, 474–481 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Lidz, A., Oh, S. P. & Furlanetto, S. R. Have we detected patchy reionization in quasar spectra? Astrophys. J. Lett. 639, 47–50 (2006)

    Article  ADS  Google Scholar 

  30. Barkana, R. & Loeb, A. Effective screening due to minihalos during the epoch of reionization. Astrophys. J. 578, 1–11 (2002)

    Article  ADS  Google Scholar 

  31. Dekel, A. & Woo, J. Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies. Mon. Not. R. Astron. Soc. 344, 1131–1144 (2003)

    Article  ADS  Google Scholar 

  32. Kauffmann, G. et al. The dependence of star formation history and internal structure on stellar mass for 105 low-redshift galaxies. Mon. Not. R. Astron. Soc. 341, 54–69 (2003)

    Article  ADS  Google Scholar 

  33. Spergel, D. N. et al. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology. Astrophys. J. (submitted); preprint at http://lambda.gsfc.nasa.gov/product/ map/dr2/pub_papers/threeyear/ parameters/wmap_3yr_param.pdf (2006).

Download references

Acknowledgements

This work was supported in part by grants from ARC, NSF and NASA. We acknowledge helpful discussions with A. Lidz regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Stuart B. Wyithe or Abraham Loeb.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Discussion

The Letter to Nature with the above title interprets the observed luminosity function of z~6 galaxies and the large-scale fluctuations in the Lyman-alpha optical depth towards z~6 quasars, based on a detailed theoretical model. This supplement provides full details on the basic version of this model as well as its variants. (PDF 620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyithe, J., Loeb, A. Suppression of dwarf galaxy formation by cosmic reionization. Nature 441, 322–324 (2006). https://doi.org/10.1038/nature04748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04748

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing