Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The search for signs of recovery of the ozone layer

Abstract

Evidence of mid-latitude ozone depletion and proof that the Antarctic ozone hole was caused by humans spurred policy makers from the late 1980s onwards to ratify the Montreal Protocol and subsequent treaties, legislating for reduced production of ozone-depleting substances. The case of anthropogenic ozone loss has often been cited since as a success story of international agreements in the regulation of environmental pollution. Although recent data suggest that total column ozone abundances have at least not decreased over the past eight years for most of the world, it is still uncertain whether this improvement is actually attributable to the observed decline in the amount of ozone-depleting substances in the Earth's atmosphere. The high natural variability in ozone abundances, due in part to the solar cycle as well as changes in transport and temperature, could override the relatively small changes expected from the recent decrease in ozone-depleting substances. Whatever the benefits of the Montreal agreement, recovery of ozone is likely to occur in a different atmospheric environment, with changes expected in atmospheric transport, temperature and important trace gases. It is therefore unlikely that ozone will stabilize at levels observed before 1980, when a decline in ozone concentrations was first observed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Reductions in stratospheric chlorine levels compared to total ozone through time.
Figure 2: Deseasonalized ozone data from satellite data at four latitudes.
Figure 3: Measured and modelled ozone trends by latitude for 1979–95 (in red) and 1996–2005 (in blue).
Figure 4: Measured and modelled seasonal ozone trends at 35° N for 1979–95 (in red) and 1996–2005 (in blue).
Figure 5: Measured and modelled ozone trends by altitude at three surface monitoring stations for 1979–95 (in red) and 1996–2005 (in blue).
Figure 6: Deseasonalized total column ozone by latitude.

References

  1. 1

    Crutzen, P. J. Ozone production rates in an oxygen-hydrogen-nitrogen atmosphere. J. Geophys. Res. 76, 7311–7327 (1971)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Johnston, H. S. & Graham, R. Photochemistry of HOx and HNO3 compounds. Can. J. Chem. 52, 1415–1423 (1974)

    CAS  Article  Google Scholar 

  3. 3

    Stolarski, R. S. & Cicerone, R. J. Stratospheric chlorine: a possible sink for ozone. Can. J. Chem. 52, 1610–1615 (1974)

    CAS  Article  Google Scholar 

  4. 4

    Wofsy, S. C., McElroy, M. B. & Yung, Y. L. The chemistry of atmospheric bromine. Geophys. Res. Lett. 2, 215–218 (1975)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 249, 810–812 (1974)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Farman, J., Gardiner, B. & Shanklin, J. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Staehelin, J., Harris, N. R. P., Appenzeller, C. & Eberhard, J. Ozone trends: A review. Rev. Geophys. 39, 231–290 (2001)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Solomon, S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316 (1999)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Montzka, S. A. et al. Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature 398, 690–694 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    World Meteorological Organization. Scientific Assessment of Ozone Depletion: 2002http://ozone.unep.org/Publications/index.asp (2003).

  12. 12

    Weatherhead, E. C. et al. Detecting the recovery of total column ozone. J. Geophys. Res. 105, 22201–22210 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Reinsel, G. C. et al. On detection of turnaround and recovery in trend for ozone. J. Geophys. Res. 107, 4078, doi:10.1029/2001JD000500 (2002)

    Article  Google Scholar 

  14. 14

    Reinsel, G. C. Trend analysis of upper stratospheric Umkehr ozone data for evidence of turnaround. Geophys. Res. Lett. 29, 1451, doi:10.1029/2002GL014716 (2002)

    ADS  Article  Google Scholar 

  15. 15

    Newchurch, M. J. et al. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. J. Geophys. Res. 108, 4507, doi:10.1029/2003JD003471 (2003)

    Article  Google Scholar 

  16. 16

    Reinsel, G. C. et al. Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res. 110, D16306, doi:10.1029/2004JD0046662 (2005)

    ADS  Article  Google Scholar 

  17. 17

    Andersen, S. B. et al. Comparison of recent modeled and observed trends in total column ozone. J. Geophys. Res. 111, D02303, doi:10.1029/2005JD006091 (2006)

    ADS  Google Scholar 

  18. 18

    Velders, G. J. M. Scenario Study of the Effects of CFC, HCFC, and HFC Emissions on Stratospheric Ozone (RIVM Report 722201006, National Institute of Public Health and the Environment, Bilthaven, The Netherlands, 1995)

    Google Scholar 

  19. 19

    Rinsland, C. P. et al. Post-Mount Pinatubo eruption ground-based infrared stratospheric column measurements of HNO3, NO, and NO2 and their comparison with model calculations. J. Geophys. Res. 108, 4437, doi:10.1029/2002JD002965 (2003)

    Article  Google Scholar 

  20. 20

    Pitari, G. & Rizi, V. An estimate of the chemical and radiative perturbation of stratospheric ozone following the eruption of Mt. Pinatubo. J. Atmos. Sci. 50, 3260–3276 (1993)

    ADS  Article  Google Scholar 

  21. 21

    Rosenfield, J. E., Douglass, A. R. & Considine, D. B. The impact of increasing carbon dioxide on ozone recovery. J. Geophys. Res. 107, 4049, doi:10.1029/2001JD000824 (2002)

    Article  Google Scholar 

  22. 22

    Fleming, E. L. et al. Simulation of stratospheric tracers using an improved empirically based two-dimensional model transport formulation. J. Geophys. Res. 104, 23911–23934 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Portmann, R. W. et al. Role of nitrogen oxides in the stratosphere: A re-evaluation based on laboratory data. Geophys. Res. Lett. 26, 2387–2390 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Weisenstein, D. K. et al. The effects of sulphur emissions from HSCT aircraft: A 2-D model intercomparison. J. Geophys. Res. 103, 1527–1547 (1998)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Smyshlyaev, S. P. et al. A two-dimensional model with input parameters from a general circulation model: ozone sensitivity to different formulations for the longitudinal temperature variation. J. Geophys. Res. 103, 28373–28387 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Stordal, F., Isaksen, I. S. A. & Horntveth, K. A diabatic circulation two-dimensional model with photo-chemistry: Simulations of ozone and long-lived tracers with surface sources. J. Geophys. Res. 90, 5757–5776 (1985)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Grooβ, J. U., Brühl, C. & Peter, T. Impact of aircraft emissions on tropospheric and stratospheric ozone, I, Chemistry and 2-D model results. Atmos. Environ. 32, 3173–3184 (1998)

    ADS  Article  Google Scholar 

  28. 28

    Wuebbles, D. J. et al. New methodology for ozone depletion potentials of short-lived compounds: n-propyl bromide as an example. J. Geophys. Res. 106, 14551–14571 (2001)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Schnadt, C. et al. Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone. Clim. Dyn. 18, 501–517 (2002)

    Article  Google Scholar 

  30. 30

    Austin, J. A three-dimensional coupled chemistry-climate model simulation of past stratospheric trends. J. Atmos. Sci. 59, 218–232 (2002)

    ADS  Article  Google Scholar 

  31. 31

    Salawitch, R. J. et al. Sensitivity of ozone to bromine in the lower stratosphere. Geophys. Res. Lett. 32, L05811, doi:10.1029/2004GL021504 (2005)

    ADS  Article  Google Scholar 

  32. 32

    Sander, S. P. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation No. 14, JPL Publ. No. 02-25 (Jet Propulsion Laboratory, Pasadena, California, 2003).

  33. 33

    Kirk-Davidoff, D. B. et al. The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature 402, 399–401 (1999)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Randeniya, L. K., Vohralik, P. F. & Plumb, I. C. Stratospheric ozone depletion at northern midlatitudes in the 21st century: the importance of future concentrations of greenhouse gases nitrous oxide and methane. Geophys. Res. Lett. 29, 1051, doi:10.1029/2001GL014295 (2002)

    ADS  Article  Google Scholar 

  35. 35

    Oltmans, S. J. et al. The increase in stratospheric water vapor from balloonborne frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys. Res. Lett. 27, 3453–3456 (2000)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Shindell, D. T. Climate and ozone response to increased stratospheric water vapor. Geophys. Res. Lett. 28, 1551–1554 (2001)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Randel, W. J. et al. Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci. 61, 2133–2148 (2004)

    ADS  Article  Google Scholar 

  38. 38

    Chipperfield, M. P. & Jones, R. L. Relative influences of atmospheric chemistry and transport on Arctic ozone trends. Nature 400, 551–554 (1999)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Salby, M. L. & Callaghan, P. F. Fluctuations of total ozone and their relationship to stratospheric air motions. J. Geophys. Res. 98, 2715–2727 (1993)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Hood, L. L., Rossi, S. & Beulen, M. Trends in lower stratospheric zonal winds, Rossby wave breaking behaviour, and column ozone at northern midlatitudes. J. Geophys. Res. 104, 24321–24339 (1999)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Fusco, A. C. & Salby, M. L. Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Clim. 12, 1619–1629 (1999)

    ADS  Article  Google Scholar 

  42. 42

    Steinbrecht, W., Claude, H., Kohler, U. & Hoinka, K. P. Correlations between tropopause height and total ozone: implications for long-term changes. J. Geophys. Res. 103, 19183–19192 (1998)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Forster, P. M. & Tourpali, K. Effect of tropopause height changes on the calculation of ozone trends and their radiative forcing. J. Geophys. Res. 106, 12241–12251 (2001)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Santer, B. D. et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301, 479–483, doi:10.1126.1084123 (2003)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Zhou, S. et al. Trends of NAO and AO and their associations with stratospheric processes. Geophys. Res. Lett. 28, 4107–4110 (2001)

    ADS  Article  Google Scholar 

  46. 46

    Appenzeller, C., Weiss, A. K. & Staehelin, J. North Atlantic Oscillation modulates total ozone winter trends. Geophys. Res. Lett. 27, 1131–1134 (2000)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Austin, J. et al. Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys. 3, 1–27 (2003)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Shindell, D. T., Rind, D. & Lonergan, P. Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392, 589–592 (1998)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Newman, P. A. & Nash, E. R. Quantifying the wave driving of the stratosphere. J. Geophys. Res. 105, 12485–12497 (2000)

    ADS  Article  Google Scholar 

  50. 50

    Schnadt, C. et al. Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone. Clim. Dyn. 18, 501–517 (2002)

    Article  Google Scholar 

  51. 51

    Manney, G. et al. The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res. 110, D4107, doi:10.1029/2004JD005367 (2005)

    ADS  Article  Google Scholar 

  52. 52

    Ramaswamy, V. Stratospheric temperature trends: observations and model simulations. Rev. Geophys. 39, 71–122 (2001)

    ADS  Article  Google Scholar 

  53. 53

    Shine, K. P. et al. A comparison of model simulated trends in stratospheric temperatures. Q. J. R. Meteorol. Soc. 129, 1565–1588 (2003)

    ADS  Article  Google Scholar 

  54. 54

    Thrush, B. A. The chemistry of the stratosphere. Rep. Prog. Phys. 51, 1341–1371 (1988)

    ADS  CAS  Article  Google Scholar 

  55. 55

    Zerefos, C. S. et al. Solar activity-total ozone relationships: observations and model studies with the heterogeneous chemistry. J. Geophys. Res. 102, 1561–1569 (1997)

    ADS  CAS  Article  Google Scholar 

  56. 56

    Randall, C. E. et al. Stratospheric effects of energetic particle precipitation in 2003–2004. Geophys. Res. Lett. 32, L05802, doi:10.1029/2004GL022003 (2005)

    ADS  Article  Google Scholar 

  57. 57

    Jackman, C. H., Fleming, E. L. & Vitt, F. M. Influence of extremely large solar proton events in a changing stratosphere. J. Geophys. Res. 105, 11659–11670 (2000)

    ADS  CAS  Article  Google Scholar 

  58. 58

    Stephenson, J. A. E. & Scourfield, M. W. J. Importance of energetic solar protons in ozone depletion. Nature 352, 137–139 (1991)

    ADS  CAS  Article  Google Scholar 

  59. 59

    Sinnhuber, M. et al. A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophys. Res. Lett. 30, doi:10.1029/2003GL017265 (2003)

  60. 60

    Dessler, A. E. et al. Balloon-borne measurements of ClO, NO, and O3 in a dense volcanic cloud: an analysis of heterogeneous chemistry between 20 and 30 km. Geophys. Res. Lett. 20, 2527–2530 (1993)

    ADS  CAS  Article  Google Scholar 

  61. 61

    Fahey, D. W. et al. In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature 363, 509–514 (1993)

    ADS  CAS  Article  Google Scholar 

  62. 62

    Solomon, S. et al. The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res. 101, 6713–6727 (1996)

    ADS  CAS  Article  Google Scholar 

  63. 63

    Prather, M. J. Catastrophic loss of stratospheric ozone in dense volcanic clouds. J. Geophys. Res. 97, 10187–10191 (1992)

    ADS  Article  Google Scholar 

  64. 64

    Thomason, L. W., Poole, L. R. & Deshler, T. A global climatology of stratospheric aerosol surface area density deduced from SAGE II measurements. J. Geophys. Res. 102, 8967–8976 (1997)

    ADS  CAS  Article  Google Scholar 

  65. 65

    Schoeberl, M. R., Bhartia, P. K. & Herman, J. R. Tropical ozone loss following the eruption of Mt. Pinatubo. Geophys. Res. Lett. 20, 29–32 (1993)

    ADS  CAS  Article  Google Scholar 

  66. 66

    Hofmann, D. J. et al. Ozone loss in the lower stratosphere over the United States in 1992–1993: Evidence for heterogeneous chemistry on the Pinatubo aerosol. Geophys. Res. Lett. 21, 65–68 (1994)

    ADS  CAS  Article  Google Scholar 

  67. 67

    Hegerl, G. C. et al. Multi-fingerprint detection and attribution analysis of greenhouse gas-, greenhouse gas-plus-aerosol and solar forced climate change. Clim. Dyn. 13, 613–634 (1997)

    Article  Google Scholar 

  68. 68

    Hofmann, D. J. et al. Ten years of ozonesonde measurements at the south pole: implications for recovery of springtime Antarctic ozone. J. Geophys. Res. 102, 8931–8943 (1997)

    ADS  CAS  Article  Google Scholar 

  69. 69

    Hadjinicolaou, P., Pyle, J. A. & Harris, N. R. P. The recent turnaround in stratospheric ozone over northern middle latitudes: A dynamical modeling perspective. Geophys. Res. Lett. 32, L12821, doi:10.1029/2005GL022476 (2005)

    ADS  Article  Google Scholar 

  70. 70

    Rex, M. et al. Arctic ozone loss and climate change. Geophys. Res. Lett. 31, L04116, doi:10.1029/2003GL018844 (2004)

    ADS  Article  Google Scholar 

  71. 71

    Fioletov, V. E. & Shepherd, T. G. Seasonal persistence of midlatitudes total ozone anomalies. Geophys. Res. Lett. 30, 1417, doi:10.1029/2002GL016739 (2003)

    ADS  Article  Google Scholar 

  72. 72

    Prather, M. & Jaffe, A. H. Global impact of the Antarctic ozone hole: chemical propagation. J. Geophys. Res. 95, 3473–3492 (1990)

    ADS  Article  Google Scholar 

  73. 73

    Logan, J. A. et al. Trends in the vertical distribution of ozone: a comparison of two analyses of ozonesonde data. J. Geophys. Res. 104, 26373–26399 (1999)

    ADS  CAS  Article  Google Scholar 

  74. 74

    Randel, W. J. et al. Trends in the vertical distribution of ozone. Science 285, 1689–1692 (1999)

    CAS  Article  Google Scholar 

  75. 75

    Bojkov, R. D. et al. Vertical ozone distribution characteristics deduced from 44,000 re-evaluated Umkehr profiles (1957–2000). Meteorol. Atmos. Phys. 79, 127–158 (2002)

    ADS  Article  Google Scholar 

  76. 76

    Miller, A. J. et al. Comparisons of observed ozone trends and solar effects in the stratosphere through examination of ground-based Umkehr and combined solar backscattered ultraviolet (SBUV) and SBUV 2 satellite data. J. Geophys. Res. 101, 9017–9022 (1996)

    ADS  CAS  Article  Google Scholar 

  77. 77

    Petropavlovskikh, I. et al. On shifts in the long-term Umkehr radiance records and their influence on retrieved ozone profiles. Geophys. Res. Lett. 28, 255–258 (2001)

    ADS  CAS  Article  Google Scholar 

  78. 78

    Waugh, D. W. et al. Persistence of the lower stratospheric polar vortices. J. Geophys. Res. 104, 27191–27201 (1999)

    ADS  Article  Google Scholar 

  79. 79

    Pawson, S. & Naujokat, B. The cold winters of the middle 1990s in the northern lower stratosphere. J. Geophys. Res. 104, 14209–14222 (1999)

    ADS  Article  Google Scholar 

  80. 80

    Tabazadeh, A. & Cordero, E. New directions: stratospheric ozone recovery in a changing atmosphere. Atmos. Environ. 38, 647–649 (2004)

    ADS  CAS  Article  Google Scholar 

  81. 81

    Rosenfield, J., Douglass, A. R. & Considine, D. B. The impact of increasing carbon dioxide on ozone recovery. J. Geophys. Res. 107, 4049, doi:10.1029/2001JD000824 (2003)

    Google Scholar 

  82. 82

    Langematz, U. et al. Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J. Geophys. Res. 108, 4027, doi:10.1029/2002JD002069 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We thank NASA GSFC, NOAA ESRL, EPA CISES, Danish National Science Foundation, EU CANDIDOZ and the Fulbright Foundation for their support of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Weatherhead.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weatherhead, E., Andersen, S. The search for signs of recovery of the ozone layer. Nature 441, 39–45 (2006). https://doi.org/10.1038/nature04746

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing