Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Local switching of two-dimensional superconductivity using the ferroelectric field effect

Abstract

Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity1 and colossal magnetoresistance2. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters—in particular the doping level—so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors3. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with ‘perfect’ interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the device, and topographic and piezoelectric images of the field effect active region.
Figure 2: Transport properties for the two polarization states.
Figure 3: Superconducting properties for the two polarization states.
Figure 4: Dependence of the critical temperature on carrier density for the two polarization states.

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)

    Article  ADS  CAS  Google Scholar 

  2. Tokura, Y. (ed.) Advances in Condensed Matter Science Vol. 2, Colossal Magnetoresistive Oxides (Gordon and Breach, London, 2000)

  3. Ahn, C. H., Triscone, J.-M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003)

    Article  ADS  CAS  PubMed Central  Google Scholar 

  4. Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964)

    Article  ADS  CAS  Google Scholar 

  5. Pfeiffer, E. R. & Schooley, J. F. Superconducting transition temperatures of Nb-doped SrTiO3 . Phys. Lett. A 29, 589–590 (1969)

    Article  ADS  CAS  Google Scholar 

  6. Koonce, C. S., Cohen, M. L., Schooley, J. F., Hosler, W. R. & Pfeiffer, E. R. Superconducting transition temperatures of semiconducting SrTiO3 . Phys. Rev. 163, 380–390 (1967)

    Article  ADS  CAS  Google Scholar 

  7. Ahn, C. H. et al. Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100–1103 (1997)

    Article  CAS  Google Scholar 

  8. Takahashi, K. S. et al. Electrostatic modulation of the electronic properties of Nb-doped SrTiO3 superconducting films. Appl. Phys. Lett. 84, 1722–1724 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Müller, K. A. & Burkard, H. SrTiO3: An intrinsic quantum para-electric below 4 K. Phys. Rev. B 19, 3593–3602 (1979)

    Article  ADS  Google Scholar 

  10. Tufte, O. N. & Chapman, P. W. Electron mobility in semiconducting strontium titanate. Phys. Rev. 155, 796–802 (1967)

    Article  ADS  CAS  Google Scholar 

  11. Aidam, R., Fuchs, D. & Schneider, R. Ferroelectric field effect in YBa2Cu3O7-δ thin films. Physica C 328, 21–30 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Lee, C., Destry, J. & Brebner, J. L. Optical absorption and transport in semiconducting SrTiO3 . Phys. Rev. B 11, 2299–2309 (1975)

    Article  ADS  CAS  Google Scholar 

  13. Leitner, A. et al. Pulsed laser deposition of superconducting Nb-doped strontium titanate thin films. Appl. Phys. Lett. 72, 3065–3067 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Ahn, C. H. et al. Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films. Science 284, 1152–1155 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Cassinese, A., Luca, G. M. D., Prigiobbo, A., Salluzzo, M. & Vaglio, R. Field-effect tuning of carrier density in Nd1.2Ba1.8Cu3Oy thin films. Appl. Phys. Lett. 84, 3933–3935 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Parendo, K. A. et al. Electrostatic tuning of the superconductor-insulator transition in two dimensions. Phys. Rev. Lett. 94, 197004 (2005)

    Article  ADS  Google Scholar 

  17. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of superconducting critical field Hc2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)

    Article  ADS  CAS  Google Scholar 

  18. Takahashi, K. S. et al. Epitaxial growth and transport properties of Nb-doped SrTiO3 thin films. Proc. SPIE 5932, 267–274 (2005)

    ADS  Google Scholar 

  19. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, New York, 1996)

    Google Scholar 

  20. Kosterlitz, J. M. & Thouless, D. J. Long range order and metastability in two dimensional solids and superfluids. J. Phys. C 5, L124–L126 (1972)

    Article  ADS  CAS  Google Scholar 

  21. Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987)

    Article  ADS  CAS  Google Scholar 

  22. Beasley, M. R., Mooji, J. E. & Orlando, T. P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979)

    Article  ADS  CAS  Google Scholar 

  23. Gabay, M. & Kapitulnik, A. Vortex-antivortex crystallization in thin superconducting and superfluid films. Phys. Rev. Lett. 71, 2138–2141 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Ohashi, S. et al. Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth. Rev. Sci. Instrum. 70, 178–183 (1999)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Dawber for a careful reading of the manuscript. This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research, ‘Materials with Novel Electronic Properties, MaNEP’ and division II, New Energy and Industrial Technology Development Organization (NEDO) of Japan, and ESF (Thiox).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Triscone.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Gabay, M., Jaccard, D. et al. Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature 441, 195–198 (2006). https://doi.org/10.1038/nature04731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04731

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing