Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors

Abstract

The attempt to understand copper oxide superconductors is complicated by the presence of multiple strong interactions in these systems. Many believe that antiferromagnetism is important for superconductivity, but there has been renewed interest in the possible role of electron–lattice coupling1,2,3,4. The conventional superconductor MgB2 has a very strong electron–lattice coupling, involving a particular vibrational mode (phonon) that was predicted by standard theory and confirmed quantitatively by experiment5. Here we present inelastic scattering measurements that show a similarly strong anomaly in the Cu–O bond-stretching phonon in the copper oxide superconductors La2-xSrxCuO4 (with x = 0.07, 0.15). Conventional theory does not predict such behaviour. The anomaly is strongest in La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4, compounds that exhibit spatially modulated charge and magnetic order, often called stripe order6; it occurs at a wave vector corresponding to the charge order. These results suggest that this giant electron–phonon anomaly, which is absent in undoped and over-doped non-superconductors, is associated with charge inhomogeneity. It follows that electron–phonon coupling may be important to our understanding of superconductivity, although its contribution is likely to be indirect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Displacement pattern of the oxygen ions for the phonon with q = (0.25 0 0) propagating perpendicular to the stripes.
Figure 2: Bond-stretching phonon branch in La1.875Ba0.125CuO4.
Figure 3: Representative energy scans at 10 K and 330 K.
Figure 4: Correlation of the phonon anomaly with stripe order and superconductivity.

Similar content being viewed by others

References

  1. Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Devereaux, T. P., Cuk, T., Shen, Z.-X. & Nagaosa, N. Anisotropic electron-phonon interaction in the cuprates. Phys. Rev. Lett. 93, 117004 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bohnen, K.-P., Heid, R. & Krauss, M. Phonon dispersion and electron-phonon interaction for YBa2Cu3O7 from first-principles calculations. Europhys. Lett. 64, 104–110 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Falter, C. & Hoffmann, G. A. Nonlocal electron-phonon coupling of ionic charge-fluctuation type and phonon anomalies in high-temperature superconductors. Phys. Rev. B 64, 054516 (2001)

    Article  ADS  Google Scholar 

  5. Baron, A. Q. R. et al. Kohn anomaly in MgB2 by inelastic X-ray scattering. Phys. Rev. Lett. 92, 197004 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Tranquada, J. M. et al. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)

    Article  ADS  Google Scholar 

  7. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40, 7391–7394 (1989)

    Article  ADS  CAS  Google Scholar 

  8. Machida, K. Magnetism in La2CuO4 based compounds. Physica C 158, 192–196 (1989)

    Article  ADS  CAS  Google Scholar 

  9. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  ADS  CAS  Google Scholar 

  10. McQueeney, R. J. et al. Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 at low temperatures. Phys. Rev. Lett. 82, 628–631 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Chung, J.-H. et al. In-plane anisotropy and temperature dependence of oxygen phonon modes in YBa2Cu3O6.95 . Phys. Rev. B 67, 014517 (2003)

    Article  ADS  Google Scholar 

  12. Pintschovius, L. et al. Lattice dynamical studies of HTSC materials. Physica C 185–189, 156–161 (1991)

    Article  ADS  Google Scholar 

  13. Tranquada, J. M., Nakajima, K., Braden, M., Pintschovius, L. & McQueeney, R. J. Bond-stretching-phonon anomalies in stripe-ordered La1.69Sr0.31NiO4 . Phys. Rev. Lett. 88, 075505 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ito, M. et al. Effects of “stripes” on the magnetic excitation spectra of La1.48Nd0.4Sr0.12CuO4 . J. Phys. Soc. Jpn 72, 1627–1630 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4 . Phys. Rev. B 70, 104517 (2004)

    Article  ADS  Google Scholar 

  16. Abbamonte, P. et al. Spatially modulated ‘Mottness’ in La2-xBaxCuO4 . Nature Phys. 1, 155–158 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Chaplot, S. L., Reichardt, W., Pintschovius, L. & Pyka, N. Common interatomic potential model for the lattice dynamics of several cuprates. Phys. Rev. B 52, 7230–7242 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Pintschovius, L., Reichardt, W., Kläser, M., Wolf, T. & von Löhneysen, H. Pronounced in-plane anisotropy of phonon anomalies in YBa2Cu3O6.6 . Phys. Rev. Lett. 89, 037001 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Pintschovius, L. et al. Oxygen phonon branches in YBa2Cu3O7 . Phys. Rev. B 69, 214506 (2004)

    Article  ADS  Google Scholar 

  20. Uchiyama, H. et al. Softening of Cu-O bond stretching phonons in tetragonal HgBa2Cu O4+δ . Phys. Rev. Lett. 92, 197005 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Pintschovius, L. et al. Evidence for dynamic charge stripes in the phonons of optimally doped YBCO. Preprint at http://www.arxiv.org/PS_cache/cond-mat/pdf/0308/0308357.pdf (2003).

  22. Pintschovius, L. & Braden, M. Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 . Phys. Rev. B 60, R15039 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Fukuda, T. et al. Doping dependence of softening in the bond-stretching phonon mode of La2-xSrxCuO4 (0 ≤ x ≤ 0.29). Phys. Rev. B 71, 060501(R) (2005)

    Article  ADS  Google Scholar 

  24. Reznik, D., Keimer, B., Dogan, F. & Aksay, I. A. q Dependence of self-energy effects of the plane oxygen vibration in YBa2Cu3O7 . Phys. Rev. Lett. 75, 2396–2399 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Rösch, O. & Gunnarsson, O. Electron-phonon interaction in the tJ model. Phys. Rev. Lett. 92, 146403 (2004)

    Article  ADS  PubMed  Google Scholar 

  26. Ishihara, S. & Nagaosa, N. Interplay of electron-phonon interaction and electron correlation in high-temperature superconductivity. Phys. Rev. B 69, 144520 (2004)

    Article  ADS  Google Scholar 

  27. Kaneshita, E., Ichioka, M. & Machida, K. Phonon anomalies due to collective stripe modes in high Tc cuprates. Phys. Rev. Lett. 88, 115501 (2002)

    Article  ADS  PubMed  Google Scholar 

  28. Hiraka, H. et al. Spin fluctuations in the underdoped high-Tc cuprate La1.93Sr0.07CuO4 . Phys. Soc. Jpn 70, 853–858 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high temperature superconductor YBa2Cu3O6+x . Nature 430, 650–654 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhou, X. J. et al. One-dimensional electronic structure and suppression of d-wave node state in La1.28Nd0.6Sr0.12CuO4 . Science 286, 268–272 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.D.G. and J.M.T. are supported by the Office of Science, US Department of Energy. K.Y., M.F. and M.S. are supported by grants from the MEXT of Japan. D.R. thanks S. Kivelson for comments on the first version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Reznik.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznik, D., Pintschovius, L., Ito, M. et al. Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006). https://doi.org/10.1038/nature04704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04704

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing