Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function

Abstract

Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels, promoting the immune response to pathogens by activating the transcription factor NFAT. We have previously shown that cells from patients with one form of hereditary severe combined immune deficiency (SCID) syndrome are defective in store-operated Ca2+ entry and CRAC channel function. Here we identify the genetic defect in these patients, using a combination of two unbiased genome-wide approaches: a modified linkage analysis with single-nucleotide polymorphism arrays, and a Drosophila RNA interference screen designed to identify regulators of store-operated Ca2+ entry and NFAT nuclear import. Both approaches converged on a novel protein that we call Orai1, which contains four putative transmembrane segments. The SCID patients are homozygous for a single missense mutation in ORAI1, and expression of wild-type Orai1 in SCID T cells restores store-operated Ca2+ influx and the CRAC current (ICRAC). We propose that Orai1 is an essential component or regulator of the CRAC channel complex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Gene-dosage effect in store-operated Ca 2+ entry.
Figure 2: A region on chromosome 12q24 is linked to the SCID gene defect.
Figure 3: Drosophila Orai regulates NFAT translocation and Ca 2+ influx.
Figure 4: ORAI1 is mutated in the SCID patients.
Figure 5: Orai1 complements the Ca 2+ entry defect in SCID patients' T cells.
Figure 6: Expression of Orai1 restores CRAC channel function in SCID T cells.

References

  1. 1

    Lewis, R. S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001)

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Feske, S., Okamura, H., Hogan, P. G. & Rao, A. Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun. 311, 1117–1132 (2003)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003)

    CAS  Article  Google Scholar 

  4. 4

    Gallo, E. M., Cante-Barrett, K. & Crabtree, G. R. Lymphocyte calcium signaling from membrane to nucleus. Nature Immunol. 7, 25–32 (2006)

    CAS  Article  Google Scholar 

  5. 5

    Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. 6

    Zweifach, A. & Lewis, R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl Acad. Sci. USA 90, 6295–6299 (1993)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Parekh, A. B. & Putney, J. W. Jr . Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005)

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Prakriya, M. & Lewis, R. S. CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium 33, 311–321 (2003)

    CAS  Article  Google Scholar 

  9. 9

    Feske, S., Prakriya, M., Rao, A. & Lewis, R. S. A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. J. Exp. Med. 202, 651–662 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269, 32327–32335 (1994)

    CAS  PubMed  Google Scholar 

  11. 11

    Schlesier, M. et al. Primary severe immunodeficiency due to impaired signal transduction in T cells. Immunodeficiency 4, 133–136 (1993)

    CAS  PubMed  Google Scholar 

  12. 12

    Feske, S. et al. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26, 2119–2126 (1996)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. & Rao, A. Gene regulation by calcium influx in T lymphocytes. Nature Immunol. 2, 316–324 (2001)

    CAS  Article  Google Scholar 

  14. 14

    Feske, S., Draeger, R., Peter, H. H., Eichmann, K. & Rao, A. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J. Immunol. 165, 297–305 (2000)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Feske, S., Draeger, R., Peter, H. H. & Rao, A. Impaired NFAT regulation and its role in a severe combined immunodeficiency. Immunobiology 202, 134–150 (2000)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Prakriya, M. & Lewis, R. S. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J. Gen. Physiol. 119, 487–507 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Mori, Y. et al. Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J. Exp. Med. 195, 673–681 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Philipp, S. et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem. 278, 26629–26638 (2003)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Cui, J., Bian, J. S., Kagan, A. & McDonald, T. V. CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes. J. Biol. Chem. 277, 47175–47183 (2002)

    CAS  Article  Google Scholar 

  20. 20

    Yue, L., Peng, J. B., Hediger, M. A. & Clapham, D. E. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410, 705–709 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. 21

    Voets, T. et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J. Biol. Chem. 276, 47767–47770 (2001)

    CAS  Article  Google Scholar 

  22. 22

    Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. 23

    Putney, J. W. Jr . Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169, 381–382 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Armknecht, S. et al. High-throughput RNA interference screens in Drosophila tissue culture cells. Methods Enzymol. 392, 55–73 (2005)

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  29. 29

    Gwack, Y. et al. A genome-wide Drosophila RNAi screen identifies DYRK as a novel regulator of NFAT. Nature advance online publication, doi:10.1038/nature04631 (1 March 2006).

  30. 30

    Yeromin, A. V., Roos, J., Stauderman, K. A. & Cahalan, M. D. A store-operated calcium channel in Drosophila S2 cells. J. Gen. Physiol. 123, 167–182 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Homer. The Iliad (Book 5, line 859; Book 8, line 449) (Viking, New York, 1990).

  32. 32

    Stewart, M. “The Hours”, Greek Mythology: From the Iliad to the Fall of the Last Tyrant. http://messagenet.com/myths/bios/hours.html (2005).

  33. 33

    Altshuler, D. et al. A haplotype map of the human genome. Nature 437, 1299–1320 (2005)

    Article  Google Scholar 

  34. 34

    Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Prakriya, M. & Lewis, R. S. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J. Physiol. (Lond.) 536, 3–19 (2001)

    CAS  Article  Google Scholar 

  36. 36

    Hermosura, M. C., Monteilh-Zoller, M. K., Scharenberg, A. M., Penner, R. & Fleig, A. Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM. J. Physiol. (Lond.) 539, 445–458 (2002)

    CAS  Article  Google Scholar 

  37. 37

    Lepple-Wienhues, A. & Cahalan, M. D. Conductance and permeation of monovalent cations through depletion-activated Ca2+ channels ICRAC in Jurkat T cells. Biophys. J. 71, 787–794 (1996)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Zweifach, A. & Lewis, R. S. Rapid inactivation of depletion-activated calcium current ICRAC due to local calcium feedback. J. Gen. Physiol. 105, 209–226 (1995)

    CAS  Article  Google Scholar 

  39. 39

    Le Deist, F. et al. A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood 85, 1053–1062 (1995)

    CAS  PubMed  Google Scholar 

  40. 40

    Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nature Genet. 27, 277–285 (2001)

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Courtois, G. et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112, 1108–1115 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Schmidt-Ullrich, R. et al. Requirement of NF-κB/Rel for the development of hair follicles and other epidermal appendices. Development 128, 3843–3853 (2001)

    CAS  PubMed  Google Scholar 

  43. 43

    Smahi, A. et al. The NF-κB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum. Mol. Genet. 11, 2371–2375 (2002)

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Kanno, T. & Siebenlist, U. Activation of nuclear factor-kappaB via T cell receptor requires a Raf kinase and Ca2+ influx. Functional synergy between Raf and calcineurin. J. Immunol. 157, 5277–5283 (1996)

    CAS  PubMed  Google Scholar 

  45. 45

    Crabtree, G. R. & Olson, E. N. NFAT signaling: Choreographing the social lives of cells. Cell 109, S67–S79 (2002)

    CAS  Article  Google Scholar 

  46. 46

    Leykin, I. et al. Comparative linkage analysis and visualization of high-density oligonucleotide SNP array data. BMC Genet. 6, 7 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Gudbjartsson, D. F., Jonasson, K., Frigge, M. L. & Kong, A. Allegro, a new computer program for multipoint linkage analysis. Nature Genet. 25, 12–13 (2000)

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Ehl, I. Barlan, G. Tuncman and T. Akkoc for facilitating the contact with the SCID patients' families; B. Mathey-Prevot, N. Perrimon, and staff at the Drosophila RNAi Screening Centre at Harvard Medical School for valuable assistance with the screens; M. Komarinski for software support (Genehunter 2.1r5); J. Nardone for help with sequence analysis; S. Sharma for providing the S2R + cell line stably transduced with NFAT–GFP; and D. Neems for technical assistance. This work was funded by grants from the National Institutes of Health to A.R., R.S.L and S.F., and an Immune Deficiency Foundation grant to S.F. Author Contributions S.F. was responsible for all experiments involving genetic and functional analysis of SCID patients, and was assisted in these experiments by S.-H.P. Y.G. designed and implemented the genome-wide Drosophila RNA screen that identified dOrai, with assistance from S.S. M.P. and R.S.L. analysed the electrophysiological properties of calcium currents in Orai1-reconstituted SCID T cells provided by S.F. M.D. advised on the design of the linkage mapping screen and analysis of linkage data, which was carried out by B.T. P.H. and A.R. provided advice and overall direction, and supervised project planning and execution.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anjana Rao.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–5. (PDF 2298 kb)

Supplementary Notes

This file contains Supplementary Methods, additional references and Supplementary Figure Legends. (PDF 114 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feske, S., Gwack, Y., Prakriya, M. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006). https://doi.org/10.1038/nature04702

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing