Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neurons in the orbitofrontal cortex encode economic value


Economic choice is the behaviour observed when individuals select one among many available options. There is no intrinsically ‘correct’ answer: economic choice depends on subjective preferences. This behaviour is traditionally the object of economic analysis1 and is also of primary interest in psychology2. However, the underlying mental processes and neuronal mechanisms are not well understood. Theories of human and animal choice1,2,3 have a cornerstone in the concept of ‘value’. Consider, for example, a monkey offered one raisin versus one piece of apple: behavioural evidence suggests that the animal chooses by assigning values to the two options4. But where and how values are represented in the brain is unclear. Here we show that, during economic choice, neurons in the orbitofrontal cortex5,6,7,8,9,10,11,12,13,14,15,16,17,18 (OFC) encode the value of offered and chosen goods. Notably, OFC neurons encode value independently of visuospatial factors and motor responses. If a monkey chooses between A and B, neurons in the OFC encode the value of the two goods independently of whether A is presented on the right and B on the left, or vice versa. This trait distinguishes the OFC from other brain areas in which value modulates activity related to sensory or motor processes19,20,21,22,23,24,25. Our results have broad implications for possible psychological models, suggesting that economic choice is essentially choice between goods rather than choice between actions. In this framework, neurons in the OFC seem to be a good candidate network for value assignment underlying economic choice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Activity of one neuron.
Figure 3: Activity of six neurons.
Figure 4: Time course.

Similar content being viewed by others


  1. Samuelson, P. A. Foundations of Economic Analysis (Harvard Univ. Press, Cambridge, 1947)

    MATH  Google Scholar 

  2. Kahneman, D. & Tversky, A. (eds) Choices, Values and Frames (Russell Sage Foundation–Cambridge Univ. Press, Cambridge/New York, 2000)

  3. Kagel, J. H., Battalio, R. C. & Green, L. Economic Choice Theory: An Experimental Analysis of Animal Behavior (Cambridge Univ. Press, Cambridge/New York, 1995)

    Book  Google Scholar 

  4. Padoa-Schioppa, C., Jandolo, L. & Visalberghi, E. Multi-stage mental process for economic choice in capuchins. Cognition 99, B1–B13 (2006)

    Article  PubMed  Google Scholar 

  5. Ongur, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Pasquier, F. & Petit, H. Frontotemporal dementia: its rediscovery. Eur. Neurol. 38, 1–6 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Hodges, J. R. Frontotemporal dementia (Pick's disease): clinical features and assessment. Neurology 56, S6–S10 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Butter, C. M., McDonald, J. A. & Snyder, D. R. Orality, preference behavior, and reinforcement value of nonfood object in monkeys with orbital frontal lesions. Science 164, 1306–1307 (1969)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Rahman, S., Sahakian, B. J., Hodges, J. R., Rogers, R. D. & Robbins, T. W. Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain 122, 1469–1493 (1999)

    Article  PubMed  Google Scholar 

  10. Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–225 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Raleigh, M. J. & Steklis, H. D. Effect of orbitofrontal and temporal neocortical lesions of the affiliative behavior of vervet monkeys (Cercopithecus aethiops sabaeus). Exp. Neurol. 73, 378–389 (1981)

    Article  CAS  PubMed  Google Scholar 

  12. Izquierdo, A., Suda, R. K. & Murray, E. A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neurosci. 4, 95–102 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53–60 (1989)

    Article  PubMed  Google Scholar 

  16. Roesch, M. R. & Olson, C. R. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304, 307–310 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wallis, J. D. & Miller, E. K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003)

    Article  PubMed  Google Scholar 

  18. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Kawagoe, R., Takikawa, Y. & Hikosaka, O. Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neurosci. 1, 411–416 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002)

    Article  ADS  PubMed  Google Scholar 

  23. Ikeda, T. & Hikosaka, O. Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron 39, 693–700 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Roesch, M. R. & Olson, C. R. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J. Neurophysiol. 90, 1766–1789 (2003)

    Article  PubMed  Google Scholar 

  25. McCoy, A. N., Crowley, J. C., Haghighian, G., Dean, H. L. & Platt, M. L. Saccade reward signals in posterior cingulate cortex. Neuron 40, 1031–1040 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Deaner, R. O., Khera, A. V. & Platt, M. L. Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Curr. Biol. 15, 243–248 (2005)

    Article  Google Scholar 

  27. Glimcher, P. W., Dorris, M. C. & Bayer, H. M. Physiological utility theory and the neuroeconomics of choice. Games Econ. Behav. 52, 213–256 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Simon, H. A. The architecture of complexity. Proc. Am. Phil. Soc. 106, 467–482 (1962)

    Google Scholar 

  29. Pinker, S. How the Mind Works (Norton, New York, 1997)

    Google Scholar 

  30. Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L. & Squire, L. R. Fundamental Neuroscience Ch. 53 (Academic, San Diego, 1999)

    Google Scholar 

Download references


We thank K. Irwin, T. LaFratta, D. Averbuch, J. LeBlanc, S. Peled and J. Harper for technical assistance and animal care; E. Brown for a discussion on the statistical analysis; and T. Herrington, D. Freedman and E. Bizzi for comments on the manuscript. This work was supported by postdoctoral fellowships from the Lefler Foundation and from the Harvard Mind/Brain/Behavior Initiative (to C.P.-S.) and by a grant from the National Institute of Neurological Disorders and Stroke (to J.A.A.). Author Contributions C.P.-S. performed all aspects of the study, including the design of the experiment, collecting and analysing the data, and writing the manuscript. J.A.A. assisted in experimental design, data analysis and manuscript preparation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Camillo Padoa-Schioppa.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Results and Supplementary Figures. (PDF 1054 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padoa-Schioppa, C., Assad, J. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing