Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A debris disk around an isolated young neutron star

Abstract

Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star1 or it may possess sufficient angular momentum to form a disk2. Such ‘fallback’ is both a general prediction of current supernova models3 and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation4. Fallback disks could dramatically affect the early evolution of pulsars2,5, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (≥ 106 years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars6, suggesting the possibility of planet formation around young neutron stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infrared images of the 4U 0142 + 61 field.
Figure 2: Infrared colour–colour diagram for 4U 0142 + 61 (diamond) and 33 field stars (small crosses) from the 2MASS point source catalogue.
Figure 3: Optical/infrared spectral energy distribution of 4U 0142 + 61.

Similar content being viewed by others

References

  1. Colgate, S. A. Neutron-star formation, thermonuclear supernovae, and heavy-element reimplosion. Astrophys. J. 163, 221–230 (1971)

    Article  ADS  CAS  Google Scholar 

  2. Michel, F. C. & Dessler, A. J. Pulsar disk systems. Astrophys. J. 251, 654–664 (1981)

    Article  ADS  Google Scholar 

  3. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003)

    Article  ADS  Google Scholar 

  4. Chevalier, R. A. Neutron star accretion in a supernova. Astrophys. J. 346, 847–859 (1989)

    Article  ADS  CAS  Google Scholar 

  5. Menou, K., Perna, R. & Hernquist, L. Disk-assisted spin-down of young radio pulsars. Astrophys. J. 554, L63–L66 (2001)

    Article  ADS  Google Scholar 

  6. Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924–945 (1990)

    Article  ADS  Google Scholar 

  7. Woods, P. & Thompson, C. in Compact Stellar X-Ray Sources (eds Lewin, W. & van der Klis, M.) (Cambridge Univ. Press, in the press); preprint at http://arXiv.org/astro-ph/0406133 (2006)

    Google Scholar 

  8. Thompson, C. & Duncan, R. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-ray, and Alfven wave emission. Astrophys. J. 473, 322–342 (1996)

    Article  ADS  CAS  Google Scholar 

  9. van Paradijs, J., Taam, R. E. & van den Heuvel, E. P. J. On the nature of the ‘anomalous’ 6-s X-ray pulsars. Astron. Astrophys. 299, L41–L44 (1995)

    ADS  CAS  Google Scholar 

  10. Alpar, M. A. On young neutron stars as propellers and accretors with conventional magnetic fields. Astrophys. J. 554, 1245–1254 (2001)

    Article  ADS  Google Scholar 

  11. Chatterjee, P., Hernquist, L. & Narayan, R. An accretion model for anomalous X-ray pulsars. Astrophys. J. 534, 373–379 (2000)

    Article  ADS  Google Scholar 

  12. Hulleman, F., van Kerkwijk, M. H. & Kulkarni, S. R. The anomalous X-ray pulsar 4U 0142 + 61: variability in the infrared and a spectral break in the optical. Astron. Astrophys. 416, 1037–1045 (2004)

    Article  ADS  Google Scholar 

  13. Durant, M. & van Kerkwijk, M. H. The red clump method for reddening and distance determination for the anomalous X-ray pulsars. Astrophys. J. (submitted)

  14. Hulleman, F., van Kerkwijk, M. H. & Kulkarni, S. R. An optical counterpart to the anomalous X-ray pulsar 4U0142 + 61. Nature 408, 689–692 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Perna, R., Hernquist, L. & Narayan, R. Emission spectra of fallback disks around young neutron stars. Astrophys. J. 541, 344–350 (2000)

    Article  ADS  Google Scholar 

  16. Israel, G., et al. in Young Neutron Stars and Their Environments (eds Camilo, F. & Gaensler, B. M.) 247–250 (IAU Symp. 218, Astron. Soc. Pacific, San Francisco, 2004)

    Google Scholar 

  17. Kern, B. & Martin, C. Optical pulsations from the anomalous X-ray pulsar 4U0142 + 61. Nature 417, 527–529 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Vrtilek, S. D. et al. Observations of Cygnus X-2 with IUE—ultraviolet results from a multiwavelength campaign. Astron. Astrophys. 235, 162–173 (1990)

    ADS  CAS  Google Scholar 

  19. Durant, M. & van Kerkwijk, M. H. The broadband spectrum and infrared variability of the magnetar AXP 1E 1048.1–5937. Astrophys. J. 627, 376–382 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Tam, C. R., Kaspi, V. M., van Kerkwijk, M. H. & Durant, M. Correlated infrared and X-ray flux changes following the 2002 outburst of the anomalous X-ray pulsar 1E 2259 + 586. Astrophys. J. 617, L53–L56 (2004)

    Article  ADS  CAS  Google Scholar 

  21. de Jong, J. A., van Paradijs, J. & Augusteijn, T. Reprocessing of X-rays in low-mass X-ray binaries. Astron. Astrophys. 314, 484–490 (1996)

    ADS  Google Scholar 

  22. Wolszczan, A. & Frail, D. A. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145–147 (1992)

    Article  ADS  Google Scholar 

  23. Wolszczan, A. Confirmation of Earth-mass planets orbiting the millisecond pulsar PSR B1257 + 12. Science 264, 538–542 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Gavriil, F. P. & Kaspi, V. M. Long-term Rossi X-Ray Timing Explorer monitoring of anomalous X-ray pulsars. Astrophys. J. 567, 1067–1076 (2002)

    Article  ADS  Google Scholar 

  25. Ekşi, K. Y., Hernquist, L. & Narayan, R. Where are all the fallback disks? Constraints on propeller systems. Astrophys. J. 623, L41–L44 (2005)

    Article  ADS  Google Scholar 

  26. Phinney, E. S. & Hansen, B. M. S. in Planets Around Pulsars (eds Phillips, J. A., Thorsett, S. E. & Kulkarni, S. R.) 371–390 (ASP Conf. Vol. 36, Astron. Soc. Pacific, San Francisco, 1993)

    Google Scholar 

  27. Miller, M. C. & Hamilton, D. P. Implications of the PSR 1257 + 12 planetary system for isolated millisecond pulsars. Astrophys. J. 550, 863–870 (2001)

    Article  ADS  Google Scholar 

  28. Hurley, K. et al. An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts. Nature 434, 1098–1103 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Löhmer, O., Wolszczan, A. & Wielebinski, R. A search for cold dust around neutron stars. Astron. Astrophys. 425, 763–766 (2004)

    Article  ADS  Google Scholar 

  30. Lin, D. N. C., Woosley, S. E. & Bodenheimer, P. H. Formation of a planet orbiting pulsar 1829–10 from the debris of a supernova explosion. Nature 353, 827–829 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. van Kerkwijk for sharing the Ks-band image of 4U 0142 + 61. We also thank A. Alpar, L. Bildsten, E. Chiang, M. Durant, E. Dwek, Y. Ekşi, L. Hernquist, M. Jura and R. Narayan for discussions. This work is based on observations made with the Spitzer Space Telescope, which is operated by JPL/Caltech under a NASA contract. Support for this work was provided by NASA through a contract issued by JPL/Caltech. DLK was supported by a Pappalardo Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepto Chakrabarty.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Chakrabarty, D. & Kaplan, D. A debris disk around an isolated young neutron star. Nature 440, 772–775 (2006). https://doi.org/10.1038/nature04669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04669

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing