Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway

Abstract

The buoyancy and strength of sub-continental lithospheric mantle is thought to protect the oldest continental crust (cratons) from destruction by plate tectonic processes. The exact origin of the lithosphere below cratons is controversial, but seems clearly to be a residue remaining after the extraction of large amounts of melt1,2. Models to explain highly melt-depleted but garnet-bearing rock compositions require multi-stage processes with garnet and clinopyroxene possibly of secondary origin1,3. Here we report on orogenic peridotites (fragments of cratonic mantle incorporated into the crust during continent-continent plate collision4) from Otrøy, western Norway. We show that the peridotites underwent extensive melting during upwelling from depths of 350 kilometres or more, forming a garnet-bearing cratonic root in a single melting event. These peridotites appear to be the residue after Archaean aluminium depleted komatiite magmatism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrographs showing exsolved inter- and intracrystalline pyroxene within polycrystalline garnetites.
Figure 2: C1-chondrite normalized mineral REE data from mantle xenoliths and Otrøy orogenic peridotites.
Figure 3: Pressure–temperature diagram that schematically portrays the potential evolution of the Otrøy peridotites.

Similar content being viewed by others

References

  1. Griffin, W. L. et al. Layered mantle lithosphere in the Lac de Gras area, Slave Craton: composition, structure and origin. J. Petrol. 40, 705–727 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Pearson, D. G., Canil, D. & Shirey, S. B. in Treatise on Geochemistry, Vol. 2: The Core and Mantle (eds Holland, H. D. & Turekian, K. K.) 171–275 (Elsevier, Oxford, 2003)

    Book  Google Scholar 

  3. Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnet from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Brueckner, H. K. & Medaris, L. G. A general model for the intrusion and evolution of ‘mantle’ garnet peridotites in high-pressure and ultra-high-pressure terranes. J. Metamorph. Geol. 18, 123–133 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Dobrzhinetskaya, L. F. et al. Microdiamonds in high-grade metamorphic rocks from the Western Gneiss Region, Norway. Geology 23, 597–600 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Brueckner, H. K., Carswell, D. A. & Griffin, W. L. Paleozoic diamonds within a Precambrian peridotite lens in UHP gneisses of the Norwegian Caledonides. Earth Planet. Sci. Lett. 203, 805–816 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Van Roermund, H. L. M., Carswell, D. A., Drury, M. R. & Heijboer, T. C. Microdiamonds in a megacrystic garnet websterite pod from Bardane on the island of Fjørtoft, western Norway: Evidence for diamond formation in mantle rocks during deep continental subduction. Geology 30, 959–962 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Van Roermund, H. L. M. & Drury, M. R. Ultra-high pressure (P > 6 GPa) garnet peridotites in western Norway: exhumation of mantle rocks from more than 185 km. Terra Nova 10, 295–301 (1998)

    Article  ADS  Google Scholar 

  9. Van Roermund, H. L. M., Drury, M. R., Barnhoorn, A. & de Ronde, A. Relict majoritic garnet microstructures from ultra-deep orogenic peridotites in western Norway. J. Petrol. 42, 117–130 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Ye, K., Cong, B. & Ye, D. The possible subduction of continental material to depth greater than 200 km. Nature 407, 734–736 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Song, S., Zhang, L. & Niu, Y. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetian Plateau, NW China. Am. Mineral. 89, 1330–1336 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Drury, M. R. et al. Emplacement of deep upper-mantle rocks into cratonic lithosphere by convection and diapiric upwelling. J. Petrol. 42, 131–140 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Carswell, D. A. Possible primary upper mantle peridotite in Norwegian basal gneiss. Lithos 1, 322–355 (1968)

    Article  ADS  CAS  Google Scholar 

  14. Carswell, D. A. Garnet pyroxenite lens within Ugelvik layered garnet peridotite. Earth Planet. Sci. Lett. 20, 347–352 (1973)

    Article  ADS  CAS  Google Scholar 

  15. Dobrzhinetskaya, L. F. et al. Precipitation of pyroxenes and olivine from majoritic garnet: simulation of peridotite exhumation from great depth. Terra Nova 16, 325–330 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Haggerty, S. E. & Sautter, V. Ultradeep (greater than 300 kilometers), ultramafic upper mantle xenoliths. Science 248, 993–996 (1990)

    Article  ADS  CAS  Google Scholar 

  17. Burgess, S. R. & Harte, B. Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE chemistry. J. Petrol. 45, 609–634 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Schmidberger, S. S. & Francis, D. Constraints on the trace element composition of the Archean mantle root beneath Somerset Island, Arctic Canada. J. Petrol. 42, 1095–1117 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Van Orman, J. R., Grove, T. L., Shimizu, N. & Layne, G. D. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib. Mineral. Petrol. 142, 416–424 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Johnson, K. T. M. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol. 133, 60–68 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Fei, Y. & Bertka, C. M. in Mantle Petrology: Field Observations and High-Pressure Experimentation (eds Fei, Y., Bertka, C. M. & Mysen, B. O.) Spec. Publ. No. 6, 189–207 (The Geochemical Society, Houston, 1999)

    Google Scholar 

  22. Gasparik, T. Phase Diagrams for Geoscientists—An Atlas of the Earth's Interior (Springer, Berlin, 2003)

    Book  Google Scholar 

  23. Hellebrand, E., Snow, J. E., Hoppe, P. & Hofmann, A. W. Garnet-field melting and late stage refertilization in ‘residual’ abyssal peridotites from the central indian ridge. J. Petrol. 43, 2305–2338 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Ionov, D. Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet-facies upper mantle. J. Petrol. 45, 343–367 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Herzberg, C. Geodynamic information in peridotite petrology. J. Petrol. 45, 2507–2530 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Takahashi, E. Speculations on the Archean mantle: missing link between komatiite and depleted garnet peridotite. J. Geophys. Res. 95, 15941–15954 (1990)

    Article  ADS  Google Scholar 

  27. Green, H. W. II, Dobrzhinetskaya, L. & Bozhilov, K. N. Mineralogical and experimental evidence for very deep exhumation from subduction zones. J. Geodynam. 30, 61–76 (2000)

    Article  ADS  Google Scholar 

  28. Beyer, E. E., Brueckner, H. K., Griffin, W. L., O'Reilly, S. Y. & Graham, S. Archean mantle fragments in Proterozoic crust,Western Gneiss Region, Norway. Geology 32, 609–612 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Ringwood, A. E. Role of the transition zone and 660 km discontinuity in mantle dynamics. Phys. Earth Planet. Inter. 86, 5–24 (1994)

    Article  ADS  CAS  Google Scholar 

  30. De Smet, J. H., Van den Berg, A. P. & Vlaar, N. J. Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle. Tectonophysics 322, 19–33 (2000)

    Article  ADS  Google Scholar 

  31. Terry, M. P., Robinson, P. & Krogh Ravna, E. J. Kyanite eclogite thermobarometry and evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western Gneiss Region, Norway. Am. Mineral. 85, 1637–1650 (2000)

    Article  ADS  CAS  Google Scholar 

  32. Walter, M. J. in Treatise on Geochemistry, Vol. 2: The Core and Mantle (eds Holland, H. D. & Turekian, K. K.) 363–394 (Elsevier, Oxford, 2003)

    Book  Google Scholar 

Download references

Acknowledgements

This project was initiated during the NWO-PIONIER project of M.R.D. and subsequently funded by the Utrecht University Institute of Geodynamic Research. Electron microscopy was conducted at the Electron Microscopy Utrecht centre. The National Research Council of Italy is acknowledged for funding the SIMS laboratory at CNR-IGG (Pavia). The isotope and LA-ICP-MS facilities at Vrije Universiteit and Universiteit Utrecht are supported by the Netherlands Organisation for Scientific Research. We thank M. Røberg and T. Wilhelmsen for providing appropriate samples. P. J. O'Brien is thanked for suggestions that have led to improvements of this paper. Thanks also to H. K. Brueckner, D. A. Carswell, H. Green II, A. Scherstén and W. van Westrenen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Spengler.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

This diagram displays the Sm-Nd isochron obtained from intercrystalline clinopyroxene and garnet in sample DS0298. The mineral data and the initial of the isochron show very high radiogenic 143Nd indicating an older origin for the microstructure than its mid-Proterozoic equilibration at 1.4 Ga. (PDF 135 kb)

Supplementary Table 1

This table shows representative average major element mineral compositions of intra- and intercrystalline mineral phases in garnetite samples DS0297 and DS0298 and in nodular matrix garnet DS0213 and DS0289. (PDF 40 kb)

Supplementary Table 2

This table shows Sm-Nd mineral isotope data and model ages obtained from the garnetite samples DS0297 and DS0298. (PDF 90 kb)

Supplementary Notes

This file presents mineral major element characteristics of both garnetite samples DS0297 and DS0298 and of the matrix samples DS0213 and DS0289 containing nodular garnet. The mineral data from Suppl. Tab. 1 was used to calculate pressure and temperature estimates and the composition of the majorite precursor. (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spengler, D., van Roermund, H., Drury, M. et al. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway. Nature 440, 913–917 (2006). https://doi.org/10.1038/nature04644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04644

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing