Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes

Abstract

There is consensus among climate models that Arctic climate is particularly sensitive to anthropogenic greenhouse gases and that, over the next century, Arctic surface temperatures are projected to rise at a rate about twice the global mean1. The response of Arctic surface temperatures to greenhouse gas thermal emission is modified by Northern Hemisphere synoptic meteorology and local radiative processes2,3,4. Aerosols may play a contributing factor through changes to cloud radiative properties. Here we evaluate a previously suggested contribution of anthropogenic aerosols to cloud emission and surface temperatures in the Arctic5,6,7,8. Using four years of ground-based aerosol and radiation measurements obtained near Barrow, Alaska, we show that, where thin water clouds and pollution are coincident, there is an increase in cloud longwave emissivity resulting from elevated haze levels. This results in an estimated surface warming under cloudy skies of between 3.3 and 5.2 W m-2 or 1 and 1.6 °C. Arctic climate is closely tied to cloud longwave emission2,4,9, but feedback mechanisms in the system are complex10 and the actual climate response to the described sensitivity remains to be evaluated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sensitivity of cloud LW emissivity to changes in droplet number concentration for fixed water path, SLW = (d ɛ /d N)W.
Figure 2: Surface-based observations of Arctic pollution, clouds, and their radiative properties, made near Barrow, Alaska.

References

  1. 1

    Houghton, J. T. et al. (eds) Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, Cambridge, UK, 2001)

  2. 2

    Overland, J. E., Adams, J. M. & Bond, N. A. Regional variation of winter temperatures in the Arctic. J. Clim. 10, 821–837 (1997)

    ADS  Article  Google Scholar 

  3. 3

    Wang, X. & Key, J. R. Recent trends in Arctic surface, cloud, and radiation properties from space. Science 299, 1725–1728 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Vavrus, S. The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Clim. 17, 603–615 (2004)

    ADS  Article  Google Scholar 

  5. 5

    Zhang, T., Stamnes, K. & Bowling, S. A. Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and subarctic. J. Clim. 9, 2110–2123 (1996)

    ADS  Article  Google Scholar 

  6. 6

    Curry, J. & Ebert, E. Sensitivity of the thickness of Arctic sea ice to the optical properties of clouds. Ann. Glaciol. 14, 43–46 (1990)

    ADS  Article  Google Scholar 

  7. 7

    Garrett, T. J., Radke, L. F. & Hobbs, P. V. Aerosol effects on the cloud emissivity and surface longwave heating in the arctic. J. Atmos. Sci. 59, 769–778 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Lubin, D. & Vogelmann, A. M. A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 439, 453–456 (2006)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Miller, J. R. & Russell, G. L. Projected impact of climate change on the energy budget of the Arctic Ocean by a global climate model. J. Clim. 15, 3028–3042 (2002)

    ADS  Article  Google Scholar 

  10. 10

    Curry, J. A., Rossow, W. B., Randall, D. & Schramm, J. L. Overview of Arctic cloud and radiation characteristics. J. Clim. 9, 1731–1764 (1996)

    ADS  Article  Google Scholar 

  11. 11

    Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977)

    ADS  Article  Google Scholar 

  12. 12

    Twomey, S. Aerosol, clouds, and radiation. Atmos. Environ. A 25, 2435–2442 (1991)

    ADS  Article  Google Scholar 

  13. 13

    Marchand, R. et al. An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data. J. Geophys. Res. 108, 4773, doi:10.1029/2003JD003843 (2003)

    Article  Google Scholar 

  14. 14

    Walsh, J. E. & Chapman, W. L. Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalyses. J. Clim. 11, 3030–3045 (1998)

    ADS  Article  Google Scholar 

  15. 15

    Shupe, M. D. & Intrieri, J. M. Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 17, 616–628 (2004)

    ADS  Article  Google Scholar 

  16. 16

    Barrie, L. A. Arctic air pollution: an overview of current knowledge. Atmos. Environ. 20, 643–663 (1986)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Polissar, A. V. et al. The aerosol at Barrow, Alaska: long-term trends and source locations. Atmos. Environ. 33, 2441–2458 (1999)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Baskaran, M. & Shaw, G. E. Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be. J. Aerosol. Sci. 32, 443–452 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Wylie, D. P. & Hudson, J. G. Effects of long-range transport and clouds on cloud condensation nuclei in the springtime Arctic. J. Geophys. Res. 107, doi:10.1029/2001JD000759 (2002)

  20. 20

    Sirois, A. & Barrie, L. A. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980-1995. J. Geophys. Res. 104, 11599–11618 (1999)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Stamnes, K., Ellingson, R. G., Curry, J. A., Walsh, J. E. & Zak, B. D. Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska-Adjacent Arctic Ocean climate research site. J. Clim. 12, 46–63 (1999)

    ADS  Article  Google Scholar 

  22. 22

    NOAA CMDL Point Barrow Observatory. http://www.cmdl.noaa.gov/obop/BRW/ (2005).

  23. 23

    Radke, L. F., Hobbs, P. V. & Pinnons, J. E. Observations of cloud condensation nuclei, sodium-containing particles, ice nuclei and the light-scattering coefficient near Barrow, Alaska. J. Appl. Meteorol. 15, 982–995 (1976)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Garrett, T. J., Zhao, C., Dong, X., Mace, G. G. & Hobbs, P. V. Effects of varying aerosol regimes on low-level Arctic stratus. Geophys. Res. Lett. 31, doi:10.1029/2004GL019928 (2004)

  25. 25

    Sassen, K. Dusty ice clouds over Alaska. Nature 434, 456 (2005)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Burrows, J. P. et al. The Global Ozone Monitoring Experiment GOME: Mission concept and first scientific results. J. Atmos. Sci. 56, 151–175 (1999)

    ADS  Article  Google Scholar 

  27. 27

    Mahesh, A., Walden, V. P. & Warren, S. G. Ground-based remote sensing of cloud properties over the Antarctic Plateau. Part II: Cloud optical depths and sizes. J. Appl. Meteorol. 40, 1279–1294 (2001)

    ADS  Article  Google Scholar 

  28. 28

    Bigg, E. K. & Leck, C. Cloud-active particles over the central Arctic Ocean. J. Geophys. Res. 106, 32155–32166 (2001)

    ADS  Article  Google Scholar 

  29. 29

    Morrison, H. & Pinto, J. O. Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci. 62, 3683–3704 (2005)

    ADS  Article  Google Scholar 

  30. 30

    King, M. D. et al. Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Ocean. Technol. 21, 857–875 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation. J. Ogren provided CMDL data. V. Walden and A. Mahesh provided assistance with retrieval development. Author Contributions Both authors contributed equally to this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Garrett.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garrett, T., Zhao, C. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature 440, 787–789 (2006). https://doi.org/10.1038/nature04636

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing