Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase

Abstract

Electron transfer in cell respiration is coupled to proton translocation across mitochondrial and bacterial membranes, which is a primary event of biological energy transduction. The resulting electrochemical proton gradient is used to power energy-requiring reactions, such as ATP synthesis. Cytochrome c oxidase is a key component of the respiratory chain, which harnesses dioxygen as a sink for electrons and links O2 reduction to proton pumping1. Electrons from cytochrome c are transferred sequentially to the O2 reduction site of cytochrome c oxidase via two other metal centres, CuA and haem a, and this is coupled to vectorial proton transfer across the membrane by a hitherto unknown mechanism. On the basis of the kinetics of proton uptake and release on the two aqueous sides of the membrane, it was recently suggested that proton pumping by cytochrome c oxidase is not mechanistically coupled to internal electron transfer2. Here we have monitored translocation of electrical charge equivalents as well as electron transfer within cytochrome c oxidase in real time. The results show that electron transfer from haem a to the O2 reduction site initiates the proton pump mechanism by being kinetically linked to an internal vectorial proton transfer. This reaction drives the proton pump and occurs before relaxation steps in which protons are taken up from the aqueous space on one side of the membrane and released on the other2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and function of cytochrome c oxidase.
Figure 2: Charge translocation and electron transfer during the reaction of fully reduced cytochrome c oxidase with O2.
Figure 3: Scheme of the proposed proton pump mechanism.

References

  1. 1

    Wikström, M. K. F. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266, 271–273 (1977)

    ADS  Article  Google Scholar 

  2. 2

    Faxén, K., Gilderson, G., Ädelroth, P. & Brzezinski, P. A mechanistic principle for proton pumping by cytochrome c oxidase. Nature 437, 286–289 (2005)

    ADS  Article  Google Scholar 

  3. 3

    Babcock, G. T. & Wikström, M. O2 activation and the conservation of energy in cell respiration. Nature 356, 301–309 (1992)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Ferguson-Miller, S. & Babcock, G. T. Heme/copper terminal oxidases. Chem. Rev. 96, 2889–2907 (1996)

    CAS  Article  Google Scholar 

  5. 5

    Gennis, R. B. Coupled proton and electron transfer reactions in cytochrome oxidase. Front. Biosci. 9, 581–591 (2004)

    CAS  Article  Google Scholar 

  6. 6

    Wikström, M. Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr. Opin. Struct. Biol. 8, 480–488 (1998)

    Article  Google Scholar 

  7. 7

    Morgan, J. E., Verkhovsky, M. I., Palmer, G. & Wikström, M. The role of the PR intermediate in the reaction of cytochrome c oxidase with O2 . Biochemistry 40, 6882–6892 (2001)

    CAS  Article  Google Scholar 

  8. 8

    Jasaitis, A., Verkhovskaya, M., Morgan, J. E., Verkhovsky, M. & Wikström, M. Assignment and charge translocation stoichiometries of the major electrogenic phases in the reaction of cytochrome c oxidase with dioxygen. Biochemistry 38, 2697–2706 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Bloch, D. et al. The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc. Natl Acad. Sci. USA 101, 529–533 (2004)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Namslauer, A., Aagaard, A., Katsonouri, A. & Brzezinski, P. Intramolecular proton transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase. Biochemistry 42, 1488–1498 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Mitchell, R. & Rich, P. R. Proton uptake by cytochrome c oxidase on reduction and on ligand binding. Biochim. Biophys. Acta 1186, 19–26 (1994)

    CAS  Article  Google Scholar 

  12. 12

    Ruitenberg, M., Kannt, A., Bamberg, E., Fendler, K. & Michel, H. Reduction of cytochrome c oxidase by a second electron leads to proton translocation. Nature 417, 99–102 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Brändén, G. et al. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase. Biochemistry 44, 10466–10474 (2005)

    Article  Google Scholar 

  15. 15

    Ädelroth, P., Svensson-Ek, M., Mitchell, D. M., Gennis, R. B. & Brzezinski, P. Glutamate 286 in cytochrome aa 3 from Rhodobacter sphaeroides is involved in proton uptake during the reaction of the fully reduced enzyme with dioxygen. Biochemistry 36, 13824–13829 (1997)

    Article  Google Scholar 

  16. 16

    Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B. & Wikström, M. Substitution of asparagine for aspartate 135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton pumping activity. Biochemistry 32, 10923–10928 (1993)

    CAS  Article  Google Scholar 

  17. 17

    Babcock, G. T. How oxygen is activated and reduced in respiration. Proc. Natl Acad. Sci. USA 96, 12971–12973 (1999)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Verkhovsky, M. I., Jasaitis, A., Verkhovskaya, M. L., Morgan, J. E. & Wikström, M. Proton translocation by cytochrome c oxidase. Nature 400, 480–483 (1999)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Verkhovskaya, M. L. et al. Glutamic acid 286 in subunit I of cytochrome bo 3 is involved in proton translocation. Proc. Natl Acad. Sci. USA 94, 10128–10131 (1997)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Michel, H. Cytochrome c oxidase: catalytic cycle and mechanism of proton pumping - a discussion. Biochemistry 38, 15129–15140 (1999)

    CAS  Article  Google Scholar 

  21. 21

    Wikström, M., Verkhovsky, M. I. & Hummer, G. Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim. Biophys. Acta 1604, 61–65 (2003)

    Article  Google Scholar 

  22. 22

    Popovic, D. M. & Stuchebrukhov, A. A. Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating. FEBS Lett. 566, 126–130 (2004)

    CAS  Article  Google Scholar 

  23. 23

    Lanyi, J. K. & Luecke, H. Bacteriorhodopsin. Curr. Opin. Struct. Biol. 11, 415–419 (2001)

    CAS  Article  Google Scholar 

  24. 24

    Siegbahn, P. E. M., Blomberg, M. R. A. & Blomberg, M. L. Theoretical study of the energetics of proton pumping and oxygen reduction in cytochrome oxidase. J. Phys. Chem. B 107, 10946–10955 (2003)

    CAS  Article  Google Scholar 

  25. 25

    Flöck, D. & Helms, V. Protein-protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c. Proteins 47, 75–85 (2002)

    Article  Google Scholar 

  26. 26

    Tsukihara, T. et al. The low spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc. Natl Acad. Sci. USA 100, 15304–15309 (2003)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    CAS  Article  Google Scholar 

  28. 28

    Yoshikawa, S. et al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 1723–1729 (1998)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Buse, G., Soulimane, T., Dewor, M., Meyer, H. E. & Bluggel, M. Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase. Protein Sci. 8, 985–990 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Laakkonen for help in preparing Fig. 1, and A. Puustinen and C. Ribacka for providing samples of wild-type and mutant enzyme. This work was supported by grants from the Sigrid Jusélius Foundation, Biocentrum Helsinki and the Academy of Finland (programme 44895).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mårten Wikström.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Charge translocation in the E278Q mutant enzyme. (PDF 41 kb)

Supplementary Figure Legends

This contains the legend to the Supplementary Figure. (DOC 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belevich, I., Verkhovsky, M. & Wikström, M. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440, 829–832 (2006). https://doi.org/10.1038/nature04619

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing