Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust Salmonella metabolism limits possibilities for new antimicrobials

Abstract

New antibiotics are urgently needed to control infectious diseases. Metabolic enzymes could represent attractive targets for such antibiotics, but in vivo target validation is largely lacking. Here we have obtained in vivo information about over 700 Salmonella enterica enzymes from network analysis of mutant phenotypes, genome comparisons and Salmonella proteomes from infected mice. Over 400 of these enzymes are non-essential for Salmonella virulence, reflecting extensive metabolic redundancies and access to surprisingly diverse host nutrients. The essential enzymes identified were almost exclusively associated with a small subgroup of pathways, enabling us to perform a nearly exhaustive screen. Sixty-four enzymes identified as essential in Salmonella are conserved in other important human pathogens, but almost all belong to metabolic pathways that are inhibited by current antibiotics or that have previously been considered for antimicrobial development. Our comprehensive in vivo analysis thus suggests a shortage of new metabolic targets for broad-spectrum antibiotics, and draws attention to some previously known but unexploited targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of Salmonella metabolism during typhoid fever.
Figure 2: Experimental strategy for in vivo Salmonella proteomics.
Figure 3: Properties of Salmonella metabolic enzymes during typhoid fever.

Similar content being viewed by others

References

  1. Norrby, S. R., Nord, C. E. & Finch, R. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect. Dis. 5, 115–119 (2005)

    Article  PubMed  Google Scholar 

  2. Black, M. T. & Hodgson, J. Novel target sites in bacteria for overcoming antibiotic resistance. Adv. Drug Deliv. Rev. 57, 1528–1538 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Hughes, D. Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nature Rev. Genet. 4, 432–441 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004)

    Article  CAS  Google Scholar 

  6. Badarinarayana, V. et al. Selection analyses of insertional mutants using subgenic-resolution arrays. Nature Biotechnol. 19, 1060–1065 (2001)

    Article  CAS  Google Scholar 

  7. Kuepfer, L., Sauer, U. & Blank, L. M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomson, C. J., Power, E., Ruebsamen-Waigmann, H. & Labischinski, H. Antibacterial research and development in the 21st Century—an industry perspective of the challenges. Curr. Opin. Microbiol. 7, 445–450 (2004)

    Article  PubMed  Google Scholar 

  9. Bhan, M. K., Bahl, R. & Bhatnagar, S. Typhoid and paratyphoid fever. Lancet 366, 749–762 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. O'Ryan, M., Prado, V. & Pickering, L. K. A millennium update on pediatric diarrheal illness in the developing world. Semin. Pediatr. Infect. Dis. 16, 125–136 (2005)

    Article  PubMed  Google Scholar 

  11. Hapfelmeier, S. & Hardt, W. D. A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol. 13, 497–503 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Santos, R. L. et al. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect. 3, 1335–1344 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Porwollik, S., Santiviago, C. A., Cheng, P., Florea, L. & McClelland, M. Differences in gene content between Salmonella enterica serovar Enteritidis isolates and comparison to closely related serovars Gallinarum and Dublin. J. Bacteriol. 187, 6545–6555 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng, W. et al. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J. Bacteriol. 185, 2330–2337 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. McClelland, M. et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nature Genet. 36, 1268–1274 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Keseler, I. M. et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33, D334–D337 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Knuth, K., Niesalla, H., Hueck, C. J. & Fuchs, T. M. Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol. Microbiol. 51, 1729–1744 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Baumler, A. J., Kusters, J. G., Stojiljkovic, I. & Heffron, F. Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun. 62, 1623–1630 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Curtiss, R. III, Nakayama, K. & Kelly, S. M. Recombinant avirulent Salmonella vaccine strains with stable maintenance and high level expression of cloned genes in vivo. Immunol. Invest. 18, 583–596 (1989)

    Article  CAS  PubMed  Google Scholar 

  24. Rollenhagen, C. & Bumann, D. Salmonella enterica highly expressed genes are disease-specific. Infect. Immun. 74, 1649–1660 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Henry, T., Garcia-del Portillo, F. & Gorvel, J. P. Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells. Mol. Microbiol. 56, 252–267 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Freiberg, C. et al. Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J. Mol. Microbiol. Biotechnol. 3, 483–489 (2001)

    CAS  PubMed  Google Scholar 

  29. Gerdes, S. Y. et al. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J. Bacteriol. 184, 4555–4572 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heath, R. J., White, S. W. & Rock, C. O. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res. 40, 467–497 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wendland, M. & Bumann, D. Optimization of GFP levels for analyzing Salmonella gene expression during an infection. FEBS Lett. 521, 105–108 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. Bumann, D. Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol. Microbiol. 43, 1269–1283 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Förster for support, T. Aebischer for discussion, M. Sörensen, K. Raba and C. Reimer for technical assistance, and P. Mortensen and J. V. Olsen for providing a script to calibrate the LTQ-FT data. This work was supported by grants from the Deutsche Forschungsgemeinschaft (to D. Bumann).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Bumann.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Overview of Salmonella metabolism in a mouse enteritis model. (PDF 57 kb)

Supplementary Table 1

Published Salmonella mutant phenotypes in typhoid fever models. (XLS 24 kb)

Supplementary Table 2

Salmonella genes that are non-functional in serovars causing systemic disease. (XLS 23 kb)

Supplementary Table 3

Summary of functional and proteome evidence for Salmonella metabolic enzymes and pathways in typhoid fever and enteritis models. (XLS 68 kb)

Supplementary Table 4

Salmonella genes with controversial in vitro phenotypes. (XLS 18 kb)

Supplementary Table 5

Salmonella proteome data for typhoid fever and enteritis models. (XLS 168 kb)

Supplementary Table 6

Growth rates of Salmonella mutants in typhoid fever and enteritis models. (XLS 52 kb)

Supplementary Table 7

Metabolites likely to be present in Salmonella during typhoid fever and/or enteritis. (XLS 57 kb)

Supplementary Table 8

Properties of Salmonella enzymes representing potential antimicrobial targets. (XLS 57 kb)

Supplementary Table 9

Salmonella nutrition during typhoid fever and enteritis. (XLS 31 kb)

Supplementary Methods

Technical details of experimental methods used in this study. (DOC 50 kb)

Supplementary Notes

This file contains additional references. (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, D., Selbach, M., Rollenhagen, C. et al. Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440, 303–307 (2006). https://doi.org/10.1038/nature04616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04616

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing