Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stochastic protein expression in individual cells at the single molecule level


In a living cell, gene expression—the transcription of DNA to messenger RNA followed by translation to protein—occurs stochastically, as a consequence of the low copy number of DNA and mRNA molecules involved1,2,3,4,5,6. These stochastic events of protein production are difficult to observe directly with measurements on large ensembles of cells owing to lack of synchronization among cells. Measurements so far on single cells lack the sensitivity to resolve individual events of protein production. Here we demonstrate a microfluidic-based assay that allows real-time observation of the expression of β-galactosidase in living Escherichia coli cells with single molecule sensitivity. We observe that protein production occurs in bursts, with the number of molecules per burst following an exponential distribution. We show that the two key parameters of protein expression—the burst size and frequency—can be either determined directly from real-time monitoring of protein production or extracted from a measurement of the steady-state copy number distribution in a population of cells. Application of this assay to probe gene expression in individual budding yeast and mouse embryonic stem cells demonstrates its generality. Many important proteins are expressed at low levels7,8, and are thus inaccessible by current genomic and proteomic techniques. This microfluidic single cell assay opens up possibilities for system-wide characterization of the expression of these low copy number proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Single reporter molecule sensitivity in a microfluidic device.
Figure 2: Quantitative real-time measurement of individual protein expression events in live E. coli cells.
Figure 3: Steady-state protein copy number distributions in a population of cells.
Figure 4: Two regimes of stochasticity in protein expression.


  1. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    Article  CAS  Google Scholar 

  4. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Guptasarma, P. Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays 17, 987–997 (1995)

    Article  CAS  Google Scholar 

  8. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972)

    Google Scholar 

  10. Russo-Marie, F., Roederer, M., Sager, B., Herzenberg, L. A. & Kaiser, D. β-galactosidase activity in single differentiating bacterial cells. Proc. Natl Acad. Sci. USA 90, 8194–8198 (1993)

    Article  ADS  CAS  Google Scholar 

  11. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957)

    Article  ADS  CAS  Google Scholar 

  12. Nolan, G. P., Fiering, S., Nicolas, J. F. & Herzenberg, L. A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on β-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl Acad. Sci. USA 85, 2603–2607 (1988)

    Article  ADS  CAS  Google Scholar 

  13. Rotman, B. Measurement of activity of single molecules of β-D-galactosidase. Proc. Natl Acad. Sci. USA 47, 1981–1991 (1961)

    Article  ADS  CAS  Google Scholar 

  14. Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264, 382–388 (1994)

    Article  ADS  CAS  Google Scholar 

  15. Unger, M. et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Wu, H., Wheeler, A. & Zare, R. N. Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc. Natl Acad. Sci. USA 101, 12809–12813 (2004)

    Article  ADS  CAS  Google Scholar 

  17. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000)

    Article  CAS  Google Scholar 

  18. Balagadde, F. K., You, L., Hansen, C. L., Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol. 23, 361–365 (2005)

    Article  CAS  Google Scholar 

  20. Monod, J., Pappenheimer, A. M. Jr & Cohen-Bazire, G. The kinetics of the biosynthesis of β-galactosidase in Escherichia coli as a function of growth. Biochim. Biophys. Acta 9, 648–660 (1952)

    Article  CAS  Google Scholar 

  21. Kennell, D. & Riezman, H. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114, 1–21 (1977)

    Article  CAS  Google Scholar 

  22. Sorensen, M. & Pedersen, S. Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J. Mol. Biol. 222, 265–280 (1991)

    Article  CAS  Google Scholar 

  23. Berg, O. G. A model for the statistical fluctuations of protein number in a microbial population. J. Theor. Biol. 71, 587–603 (1975)

    Article  Google Scholar 

  24. Yarchuk, O., Jacques, N., Guillerez, J. & Dreyfus, M. Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J. Mol. Biol. 226, 581–596 (1992)

    Article  CAS  Google Scholar 

  25. Paulsson, J., Berg, O. G. & Ehrenberg, M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl Acad. Sci. USA 97, 7148–7153 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & Van Oudenaarden, A. Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005)

    Article  CAS  Google Scholar 

  29. Yu, J. et al. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993)

    Book  Google Scholar 

Download references


We acknowledge J. Xiao, K. Gudiksen and J. Markson for early involvement in the project, and J. Yu, P. Choi and J. Elf for discussions and careful reading of the manuscript. We are grateful to Q. Xu, H. Wu, members of G. M. Whitesides and R. N. Zare groups, and the Harvard Center for Nanoscale Systems for help with microfluidic fabrication. We thank K. Thorn for yeast strains, and A. and J. McMahon for stem cell strains. This work was funded by Department of Energy, Office of Biological and Environmental Research, Genomics: GTL Program, and in part by National Institute of Health (NIH) Director's Pioneer Award to X.S.X., and an NIH grant. L.C. is supported by a National Science Foundation Graduate Research Fellowship and N.F. by a Human Frontiers Science Program Long Term Fellowship.

Author information

Authors and Affiliations


Corresponding author

Correspondence to X. Sunney Xie.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods, Supplementary Figures 1–12 and additional references. (DOC 280 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cai, L., Friedman, N. & Xie, X. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing